reservoir fluid
Recently Published Documents


TOTAL DOCUMENTS

433
(FIVE YEARS 109)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
pp. 1-39
Author(s):  
Oliver C. Mullins ◽  
Li Chen ◽  
Soraya S. Betancourt ◽  
Vladislav Achourov ◽  
Hadrien Dumont ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Muhamad Aizat Kamaruddin ◽  
Ayham Ashqar ◽  
Muhammad Haniff Suhaimi ◽  
Fairus Azwardy Salleh

Abstract Uncertainties in fluid typing and contacts within Sarawak Offshore brown field required a real time decision. To enhance reservoir fluid characterisation and confirm reservoir connectivity prior to well final total depth (TD). Fluid typing while drilling was selected to assure the completion strategy and ascertain the fluvial reservoir petrophysical interpretation. Benefiting from low invasion, Logging While Drilling (LWD) sampling fitted with state of ART advanced spectroscopy sensors were deployed. Pressures and samples were collected. The well was drilled using synthetic base mud. Conventional logging while drilling tool string in addition to sampling tool that is equipped with advanced sensor technology were deployed. While drilling real time formation evaluation allowed selecting the zones of interest, while fluid typing was confirmed using continually monitored fluids pump out via multiple advanced sensors, contamination, and reservoir fluid properties were assessed while pumping. Pressure and sampling were performed in drilling mode to minimise reservoir damage, and optimise rig time, additionally sampling while drilling was performed under circulation conditions. Pressures were collected first followed by sampling. High success in collecting pressure points with a reliable fluid gradient that indicated a virgin reservoir allowed the selection of best completion strategy without jeopardising reserves, and reduced rig time. Total of seven samples from 3 different reservoirs, four oil, and three formation water. High quality samples were collected. The dynamic formation evaluation supported by while drilling sampling confirmed the reservoir fluid type and successfully discovered 39ft of oil net pay. Reservoir was completed as an oil producer. The Optical spectroscopy measurements allowed in situ fluid typing for the quick decision making. The use of advanced optical sensors allowed the sample collection and gave initial assessment on reservoir fluids properties, as a result cost saving due to eliminating the need for additional Drill Stem Test (DST) run to confirm the fluid type. Sample and formation pressures has confirmed reservoir lateral continuity in the vicinity of the field. The reservoir developed as thick and blocky sandstone. Collected sample confirmed the low contamination levels. Continuous circulation mitigated sticking and potential well-control risks. This is the first time in surrounding area, advanced optical sensors are used to aid LWD sampling and to finalize the fluid identification. The innovative technology allowed the collection of low contamination. The real-time in-situ fluid analysis measurement allowed critical decisions to be made real time, consequently reducing rig downtime. Reliable analysis of fluid type identification removed the need for additional run/service like DST etc.


2021 ◽  
Author(s):  
Saif Al Arfi ◽  
Mohamed Sarhan ◽  
Olawole Adene ◽  
Muhammad Rizky ◽  
Agung Baruno ◽  
...  

Abstract The challenges of drilling new wells are increasingly associated with minimizing HSE risks, that relate to chemical radioactive sources in the Bottom Hole Assembly for formation evaluation. Drilling risks such as differential sticking, also necessitates investigation of alternative petrophysical data gathering methodologies that can fulfil these requirements. Surface Data Logging presents a viable alternative in mature fields, satisfying petrophysical data gathering and interpretation in real-time as well, as traditional geological applications and offset well correlations in a way, to optimize well construction costs. During the planning phase, a fully integrated approach was adopted including advanced cutting and advanced gas analysis to be deployed, in this case study, well together with experienced well site personnel. A comprehensive pre-well study was conducted reviewing all offset nearby wells data. The workflow included provision of full real-time advanced cuttings and gas analysis for formation evaluation and reservoir fluid composition, lithology description, and addressing effective hole cleaning concerns. The advanced Mud Logging services was run in parallel to the Logging While Drilling services for a few pilot wells, in order to correlate downhole tool parameters, with respect to data quality control, to identify the petrophysical character of the formation markers for benchmarking future data gathering requirements. In addition to the potential use of standalone fully integrated advanced Mud Logging to reduce risks and minimize field development costs. With the help of experienced wellsite geologist on location and real time advanced gas detection utilizing high resolution mass spectrometer and X-Ray fluorescence (XRF) and X-Ray Diffraction (XRD) data, geological boundaries and formations tops were accurately identified across the whole drilled interval. Modern and advanced interpretation techniques for the integrated analysis were proven to be effective in determining sweet spots of the reservoir, fluid type, and overall reservoir quality. Deployment of fully integrated mud logging solutions with new interpretation methodologies can be effective in providing a better understanding of reservoir geological and petrophysical characteristics in real-time, offering viable alternative for minimizing formation evaluation sensors in the BHA, particularly eliminating radioactive sources, while reducing overall developments costs, without sacrificing formation evaluation requirements.


2021 ◽  
Author(s):  
Nasser M. Al-Hajri ◽  
Akram R. Barghouti ◽  
Sulaiman T. Ureiga

Abstract Gas deviation factor (z-factor) and other gas reservoir fluid properties, such as formation volume factor, density, and viscosity, are normally obtained from Pressure-Volume-Temperature (PVT) experimental analysis. This process of reservoir fluid characterization usually requires collecting pressurized fluid samples from the wellbore to conduct the experimental work. The scope of this paper will provide an alternative methodology for obtaining the z-factor. An IR 4.0 tool that heavily utilizes software coding was developed. The advanced tool uses the novel apparent molecular weight profiling concept to achieve the paper objective timely and accurately. The developed tool calculates gas properties based on downhole gradient pressure and temperature data as inputs. The methodology is applicable to dry, wet or condensate gas wells. The gas equation of state is modified to solve numerically for the z-factor using the gradient survey pressure and temperature data. The numerical solution is obtained by applying an iterative computation scheme as described below:A gas apparent molecular weight value is initialized and then gas mixture specific gravity and pseudo-critical properties are calculated.Gas mixture pseudo-reduced properties are calculated from the measured pressure and temperature values at the reservoir depth.A first z-factor value is determined as a function of the pseudo-reduced gas properties.Gas pressure gradient is obtained at the reservoir depth from the survey and used to back-calculate a second z-factor value by applying the modified gas equation of state.Relative error between the two z factor values is then calculated and compared against a low predefined tolerance.The above steps are reiterated at different assumed gas apparent molecular weight values until the predefined tolerance is achieved. This numerical approach is computerized to perform the highest possible number of iterations and then select the z-factor value corresponding to the minimum error among all iterations. The proposed workflow has been applied on literature data with known reservoir gas properties, from PVT analysis, and showed an excellent prediction performance compared to laboratory analysis with less than 5% error.


2021 ◽  
Author(s):  
Arwa Mawlod ◽  
Afzal Memon ◽  
John Nighswander

Abstract Objectives/Scope: Oil and gas operators use a variety of reservoir engineering workflows in addition to the reservoir, production, and surface facility simulation tools to quantify reserves and complete field development planning activities. Reservoir fluid property data and models are fundamental input to all these workflows. Thus, it is important to understand the propagation of uncertainty in these various workflows arising from laboratory fluid property measured data and corresponding model uncertainty. The first step in understanding the impact of laboratory data uncertainty was to measure it, and as result, ADNOC Onshore undertook a detailed study to assess the performance of four selected reservoir fluid laboratories. The selected laboratories were evaluated using a blind round-robin study on stock tank liquid density and molar mass measurements, reservoir fluid flashed gas and flashed liquid C30+ reservoir composition gas chromatography measurements, and Constant Mass Expansion (CME) Pressure-Volume-Temperature (PVT) measurements using a variety of selected reservoir and pure components test fluids. Upon completion of the analytical study and establishing a range of measurement uncertainty, a sensitivity analysis study was completed using an equation of state (EoS) model to study the impact of reservoir fluid composition and molecular weight measurement uncertainty on EoS model predictions. Methods, Procedures, Process: A blind round test was designed and administered to assess the performance of the four laboratories. Strict confidentiality was maintained to conceal the identity of samples through blind test protocols. The round-robin tests were also witnessed by the researchers. The EoS sensitivity study was completed using the Peng Robinson EoS and a commercially available software package. Results, Observations, Conclusions: The results of the fully blind reservoir fluid laboratory tests along with the statistical analysis of uncertainties will be presented in this paper. One of the laboratories had a systemic deviation in the measured plus fraction composition on black oil reference standard samples. The plus fraction concentration is typically the largest weight percent component in black oil systems and, along with the plus fraction molar mass, plays a crucial role in establishing the mole percent overall reservoir fluid compositions. Another laboratory had systemic issues related to chromatogram component integration errors that resulted in inconsistent carbon number concentration trends for various components. All laboratories failed to produce consistent molecular weight measurements for the reference samples. Finally, one laboratory had a relative deviation for P-V measurements that were significantly outside the acceptable range. The EoS sensitivity study demonstrates that the fluid composition and stock tank oil molar mass measurements have a significant impact on EoS model predictions and hence the reservoir/production models input when all other parameters are fixed. Novel/Additive Information: To the best of our knowledge, this is the first time such an extensive and fully blind round-robin test of commercial reservoir fluid characterization laboratories has been completed and published in the open literature. The industry should greatly benefit from this first-of-its-kind blind round-robin dataset being made available to all. The study provides the basis, protocols, expectations, and recommendations for such independent round-robin testing for fluid characterization laboratories on a broader scale.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7379
Author(s):  
Khaled Enab ◽  
Hamid Emami-Meybodi

Cyclic solvent injection, known as solvent huff-n-puff, is one of the promising techniques for enhancing oil recovery from shale reservoirs. This study investigates the huff-n-puff performance in ultratight shale reservoirs by conducting large-scale numerical simulations for a wide range of reservoir fluid types (retrograde condensate, volatile oil, and black oil) and different injection gases (CO2, C2H6, and C3H8). A dual-porosity compositional model is utilized to comprehensively evaluate the impact of multicomponent diffusion, adsorption, and hysteresis on the production performance of each reservoir fluid and the retention capacity of the injection gases. The results show that the huff-n-puff process improves oil recovery by 4–6% when injected with 10% PV of gas. Huff-n-puff efficiency increases with decreasing gas-oil ratio (GOR). C2H6 provides the highest recovery for the black oil and volatile oil systems, and CO2 provides the highest recovery for retrograde condensate fluid type. Diffusion and adsorption are essential mechanisms to be considered when modeling gas injection in shale reservoirs. However, the relative permeability hysteresis effect is not significant. Diffusion impact increases with GOR, while adsorption impact decreases with increasing GOR. Oil density reduction caused by diffusion is observed more during the soaking period considering that the diffusion of the injected gas caused a low prediction error, while adsorption for the injected gas showed a noticeable error.


2021 ◽  
Author(s):  
Vadim Andreevich Rubailo ◽  
Kirill Dmitrievich Isakov ◽  
Alexey Stanislavovich Osipenko ◽  
Marcel Mansurovich Akhmadiev

Abstract The work is devoted to the analytical methodology for the development of oil lenticular formations. The method is based on the theory of potentials for vertical and horizontal wells. The work takes into account the interference of wells, geological and petrophysical parameters of lenses, as well as the properties of the reservoir fluid, and a new equation for estimating the inflow to a horizontal well is derived. An assessment of the correctness of this work on the company's assets was made. The dependence for the express estimation of the number of wells depending on the economic parameters at the early stages of project development is obtained.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6398
Author(s):  
Wiesław Szott ◽  
Krzysztof Miłek

This paper addresses problems of reservoir fluid migrations in the process of CO2 sequestration in a partially depleted petroleum reservoir. A detailed analysis of the migrations is required to obtain fundamental characteristics of a sequestration structure, including estimation of its sequestration capacity and leakage risks. The paper presents a general discussion of the relevant mechanisms and their contributions to the analysed issues. The proposed approach to solve the problems relies on the usage of numerical structure modelling and simulations of the sequestration processes on numerical models of the structure. It is applied to a selected geological structure comprising a partially depleted gas reservoir. The modelling includes key types of reservoir fluid migrations: viscous multiphase transport and convection transport. It also takes into account other phenomena that affect fluid migrations including injected gas solubility in the formation water and gas trapping by capillary forces. Correspondingly, the leakage risks are associated with distinct leakage pathways (beyond the structural trap, to the caprock, via activated fractures). All these cases are separately modelled and their detailed characteristics are presented and discussed. The final results of the fluid migrations and their consequences for the leakage events are discussed and some generalized conclusions are drawn from the approach employed in the study.


2021 ◽  
Author(s):  
Adif Azral Azmi ◽  
Nur Ermayani Abu Zar ◽  
Raja Azlan Raja Ismail ◽  
Nadia Zulkifli ◽  
Nikhil Prakash Hardikar ◽  
...  

Abstract Sampling While Drilling has undergone significant changes since its advent early this decade. The continuum of applications has primarily been due to the ability to access highly deviated wellbores, to collect PVT quality and volume of formation fluids. The increased confidence is also a result of numerous applications with varied time-on-wall without ever being stuck. This paper demonstrates the contribution of this technology for reservoir fluid mapping that proved critical to update the resource assessment in a brown field through three infill wells that were a step-out to drill unpenetrated blocks and confirm their isolation from the main block of the field. As a part of the delineation plan, the objective was to confirm the current pressure regime and reservoir fluid type when drilling the S-profile appraisal wells with 75 degrees inclination. Certain sand layers were prone to sanding as evidenced from the field's long production history. Due to the proven record of this technology in such challenges, locally and globally, pipe-conveyed wireline was ruled out. During pre-job planning, there were concerns about sanding, plugging and time-on-wall and stuck tools. Empirical modeling was performed to provide realistic estimates to secure representative fluid samples. The large surface area pad was selected, due to its suitability in highly permeable yet unconsolidated formations. For the first well operation, the cleanup for confirming formation oil began with a cautious approach considering possible sanding. An insurance sample was collected after three hours. For the next target, drawing on the results of the first sampling, the pump rate was increased early in time, and a sample was collected in half the time. Similar steps were followed for the remaining two wells, where water samples were collected. Oil, water, and gas gradients were calculated. Lessons learnt and inputs from Geomechanics were used in aligning the probe face and reference to the critical drawdown pressure (CDP). A total of 4,821 feet (1,469 meters) was drilled. 58 pressures were acquired, with six formation fluid samples and five cleanup cycles for fluid identification purpose. The pad seal efficiency was 95%. The data provided useful insights into the current pressure regime and fault connectivity, enabling timely decisions for well completion. The sampling while drilling deployment was successful in the highly deviated S-profile wells and unconsolidated sand, with no nonproductive time. Because of the continuous circulation, no event of pipe sticking occurred, thereby increasing the confidence, especially in the drilling teams. The sampling while drilling operations were subsequent, due to batch drilling, with minimal time in between the jobs for turning the tools around. The technology used the latest generation sensors, algorithms, computations and was a first in Malaysia. The campaign re-instituted the clear value of information in the given environment and saving cost.


Sign in / Sign up

Export Citation Format

Share Document