A Theoretically Derived Transfer Function for Oil Recovery From Fractured Reservoirs by Waterflooding

1998 ◽  
Vol 1 (02) ◽  
pp. 141-147 ◽  
Author(s):  
Faruk Civan

Abstract A generalized formulation of the Buckley-Leverett displacement in naturally fractured porous media and an efficient solution by the method of differential quadrature and cubature for waterflooding are presented. Introduction Waterflooding is one of the economically viable techniques for recovery of additional oil following the primary recovery. However, the applications to naturally fractured reservoirs have certain challenges that arise concerning the prediction of oil recovery. Waterflooding in clayey formations involves the adverse effects of formation damage which can reduce its efficiency. The characterization of naturally fractured porous formations still needs further research. The process of matrix-to-fracture transfer of oil by imbibition of water is not well understood. It is still not clear which modeling approach amongst the various alternatives would accurately describe the mechanism of oil recovery and flow of fluids in naturally fractured formations. Numerous publications dealing with recovery of oil from reservoirs have appeared in the literature. By-and-large the modeling approaches proposed in most of these publications are highly computationally intensive or impractical for large field scale applications. Therefore, in search of a more practical approach, Kazemi et al have adopted the modeling approach by deSwaan and have demonstrated that the deSwaan approach provides certain advantages over the everpopular multiple porosity approaches reported in various publications. Basically, deSwaan's approach is a representative volume averaged description of the immiscible displacement process in fractured porous media. In this approach, deSwaan represented the matrix to fracture oil transport via a source term added to the conventional Buckley-Leverett equation by an empirical function given by Aronofsky, et al. Kazemi et al modified this function into a multi-parameter empirical function. Subsequently, Civan theoretically derived a similar function with only two parameters based on a hypothetical mechanism of oil transfer from matrix to fracture. The primary advantage of Civan's theoretical model is the reduction of the number of empirical constants while providing insight into the mechanism of oil transfer from matrix to fracture by imbibition of water. The two constants in Civan's model are considered as being representative volumetric average parameters. The values of these parameters depend on various conditions including

1982 ◽  
Vol 22 (05) ◽  
pp. 669-680 ◽  
Author(s):  
Ronald D. Evans

Abstract A general mathematic model is derived that may be used to describe fluid movement through naturally fractured reservoirs. The model treats the reservoir as a double-porosity medium consisting of heterogeneous isotropic primary rock matrix blocks and an anisotropic. heterogeneous fracture matrix system. The fractured are assumed to have a general distribution in space and orientation called the fracture matrix function to represent their statistical nature. Simplifying assumptions are made concerning flow in individual fractures and a hemispherical volume integration of microscopic fracture flow equations is performed to arrive at a generalized Darcy-type equation, with a symmetric permeability tensor evolving to describe the flow in the fracture evolving to describe the flow in the fracture matrix. For flow in the primary rock matrix blocks. Darcy's law for an isotropic medium is assumed. Time-dependent porosity equations for the primary rock matrix and the fractures are derived and coupled with the conservation of mass principle for each system to arrive at a governing set of continuity equations. Each resulting continuity equation is coupled further by a fluid interaction term that accounts for fluid movement that can take place between rock matrix blocks and fractures. The resulting equations of continuity and the equations of motion are generalized for multiphase flow through the fractured medium with variable rock and fluid properties. To complete the model formulation, a general set of auxiliary equations are specified, which can be simplified to fit a particular application. Introduction Flow of fluid in fractured porous media was recognized first in the petroleum industry in the 1940's. Since that time, many researchers have added to the volume of literature on fractured media. An extensive bibliography on flow in fractured porous media is given in Ref. 1. When attempting to model fluid flow through any type of medium, the researcher must decide which kinds of fluids and the type of flow to model. In the case of fractured porous media where most of the flow takes place through fractures, the flow can become truly turbulent. However, as demonstrated for many encounters with fracture flow, the laminar flow regime probably prevails. The development of fracture flow models has proceeded along two different approaches: the statistical and the fractured rock mass is considered a statistically homogeneous medium consisting of a combination of fractures and porous rock matrix. The fractures are considered ubiquitous, and the system is called statistically homogeneous because the probability of finding a fracture at any given point in the system is considered the same as fining one an any other point. In the enumerative approach, a fractured rock medium is studied by attempting to mode the actual geometry of fractures and porous rock matrix. The locations, orientation, and aperture variations for each individual fracture must be considered in this approach. Statistical Approach Many researchers have developed models with the statistical approach. Elkins and Skov used this approach to study anisotropic fracture permeability associated with Spraberry field, TX. Considering the extensive system of orthogonal vertical joints as an anisotropic medium, from a number of drawdown tests they were able to construct permeability ellipsoids whose axes were aligned reasonably well with the observed fractured system. This is called a "one-medium statistical model" because flow in the porous rock matrix was not considered. A two-medium statistical model for transient flow in a fractured rock medium was developed by Barenblatt et al. SPEJ P. 669^


SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 289-303 ◽  
Author(s):  
Ali Moinfar ◽  
Abdoljalil Varavei ◽  
Kamy Sepehrnoori ◽  
Russell T. Johns

Summary Many naturally fractured reservoirs around the world have depleted significantly, and improved-oil-recovery (IOR) processes are necessary for further development. Hence, the modeling of fractured reservoirs has received increased attention recently. Accurate modeling and simulation of naturally fractured reservoirs (NFRs) is still challenging because of permeability anisotropies and contrasts. Nonphysical abstractions inherent in conventional dual-porosity and dual-permeability models make them inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent technologies for discrete fracture modeling may suffer from large simulation run times, and the industry has not used such approaches widely, even though they give more-accurate representations of fractured reservoirs than dual-continuum models. We developed an embedded discrete fracture model (DFM) for an in-house compositional reservoir simulator that borrows the dual-medium concept from conventional dual-continuum models and also incorporates the effect of each fracture explicitly. The model is compatible with existing finite-difference reservoir simulators. In contrast to dual-continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity of a typical NFR. The accuracy of the embedded DFM is confirmed by comparing the results with the fine-grid, explicit-fracture simulations for a case study including orthogonal fractures and a case with a nonaligned fracture. We also perform a grid-sensitivity study to show the convergence of the method as the grid is refined. Our simulations indicate that to achieve accurate results, the embedded discrete fracture model may only require moderate mesh refinement around the fractures and hence offers a computationally efficient approach. Furthermore, examples of waterflooding, gas injection, and primary depletion are presented to demonstrate the performance and applicability of the developed method for simulating fluid flow in NFRs.


Sign in / Sign up

Export Citation Format

Share Document