Near-Tip-Screenout Hydraulic Fracturing Of Oil Wells In The Bach Ho Field, Offshore Vietnam

1995 ◽  
Author(s):  
L.V. Hung ◽  
N.T. San ◽  
A.G. Shelomentsev ◽  
J.A. Tronov ◽  
D.D. Lam ◽  
...  
2022 ◽  
Author(s):  
Mathieu M. Molenaar ◽  
Ali Al-Ghaithi ◽  
Said Kindi ◽  
Fahad Alawi

Abstract The first application of Hydraulic Fracturing in the South Oman started in 2000 to enhance water disposal wells. In 2004 the first oil wells were frac'ed. Although the technology was deployed many times, it never grew into a conventional practice. From 2004 to 2017 on average 5 Oil Wells were hydraulically fractured on yearly basis. In November 2017, a Hydraulic Fracturing Maturation & Expansion Workshop was conducted with the vision of growing the application by applying new frac concepts. A focused effort was initiated to drastically reduce cost, and simultaneously increase the scope by executing larger frac campaigns. The first hydraulic fracturing campaign introducing the frac new concepts, started end 2018 and a rapid growth from 5 wells per year to 45 wells per year was anticipated in the next three years. This large growth of scope relied on a steady supply of frac candidates and needed to be supported by screening and selecting processes that are fit for purpose in finding candidates. Although more than a hundred wells had already been frac'ed wells, selection of the most appropriate wells for stimulation was and remains one of the greatest challenges. A frac performance database was created for over 100 wells that had been hydraulically fracture stimulated to date. Recognizing that the frac performance depends on many variables ranging from subsurface properties to surface execution of the frac job, the size of the dataset proved to be too small to find correlations using sophisticated multivariable regression methods. Instead, the dataset was analyzed through careful investigation and evaluation of each frac job. In this paper the net oil gain will be used as the key success criteria i.e., value driver to demonstrates how effective the frac is achieving its business objective. Some 40% of the producers had been producing from the same zone before the hydraulic fracture stimulation. This provided the opportunity to understand the efficiency of the stimulation in terms of the "stimulation ratio" i.e., measuring the net oil gain. This paper will focus on investigating the suitability of frac'ing the reservoir based on the initial production variables; Gross Rate and BS&W. Also, this paper will discuss benefits and impacts of Hoist versus Coiled-Tubing clean-out on the frac delivery process and compare the frac performance. To date, the project demonstrated that hydraulic fracturing at low cost, can be applied as a viable development concept for producing oil wells, with the potential unlock additional and new reserves. Significant folds in production increase are possible from 2x to 7x.


2018 ◽  
Vol 7 (4.26) ◽  
pp. 279 ◽  
Author(s):  
Vladimir Bratov

The paper presents an approach for simulation of refracturing treatment on vertical oil wells. The model is accounting for filtration of hydraulic fracturing fluid through the proppant packed inside the crack formed during previous hydraulic fracturing treatments. The simulations provide a possibility to estimate history of stress intensity factor appearing at the tip of the existing crack once the time profile of pressure within the wellbore is given. Introducing critical value of the stress intensity factor for the fractured media, time-to-fracture initiation (after pressure increase start) can be estimated and compared to instance of fracture event registered in real conditions. Also, the possibility of fracture reorientation through formation of new fractures at the region adjacent to the wellbore is studied. 


2021 ◽  
Vol 15 (1-2) ◽  
pp. 1-12
Author(s):  
G. B. Silva ◽  
L. O. A. Rojas ◽  
J. A. Soares

Hydraulic fracturing consists of a technique capable of stimulating oil wells that have suffered a decline in production over time. It also allows the production in reservoirs that have low permeability through the creation of a network of channels in the rock. In this context, this article aims to numerically simulate the hydraulic fracturing applied in a sandstone reservoir according to data extracted from an oil well located in the Aracaju City field of the Sergipe-Alagoas Basin. To complete this study, a geological model of the reservoir was generated. Subsequently, a fracture was created in the rock-reservoir in a controlled manner using the Perkins and Kern fracture model. Results show that the fracture takes a satisfactory proportion in the reservoir rock, reaching a depth of penetration equivalent to 695.7 meters.


Sign in / Sign up

Export Citation Format

Share Document