Simulation of Air Injection in Light-Oil Fractured Reservoirs: Setting-Up a Predictive Dual Porosity Model

Author(s):  
Sebastien Lacroix ◽  
Philippe Delaplace ◽  
Bernard Bourbiaux ◽  
David Foulon
SPE Journal ◽  
2007 ◽  
Vol 12 (01) ◽  
pp. 77-88 ◽  
Author(s):  
Ginevra Di Donato ◽  
Huiyun Lu ◽  
Zohreh Tavassoli ◽  
Martin Julian Blunt

Summary We develop a physically motivated approach to modeling displacement processes in fractured reservoirs. To find matrix/fracture transfer functions in a dual-porosity model, we use analytical expressions for the average recovery as a function of time for gas gravity drainage and countercurrent imbibition. For capillary-controlled displacement, the recovery tends to its ultimate value with an approximately exponential decay (Barenblatt et al. 1990). When gravity dominates, the approach to ultimate recovery is slower and varies as a power law with time (Hagoort 1980). We apply transfer functions based on these expressions for core-scale recovery in field-scale simulation. To account for heterogeneity in wettability, matrix permeability, and fracture geometry within a single gridblock, we propose a multirate model (Ponting 2004). We allow the matrix to be composed of a series of separate domains in communication with different fracture sets with different rate constants in the transfer function. We use this methodology to simulate recovery in a Chinese oil field to assess the efficiency of different injection processes. We use a streamline-based formulation that elegantly allows the transfer between fracture and matrix to be accommodated as source terms in the 1D transport equations along streamlines that capture the flow in the fractures (Di Donato et al. 2003; Di Donato and Blunt 2004; Huang et al. 2004). This approach contrasts with the current Darcy-like formulation for fracture/matrix transfer based on a shape factor (Gilman and Kazemi 1983) that may not give the correct average behavior (Di Donato et al. 2003; Di Donato and Blunt 2004; Huang et al. 2004). Furthermore, we show that recovery is exceptionally sensitive to parameters that describe the physics of the displacement process, highlighting the need to make careful core-scale measurements of recovery. Introduction Di Donato et al.(2003) and Di Donato and Blunt (2004) proposed a dual-porosity streamline-based model for simulating flow in fractured reservoirs. Conceptually, the reservoir is composed of two domains: a flowing region with high permeability that represents the fracture network and a stagnant region with low permeability that represents the matrix (Barenblatt et al. 1960; Warren and Root 1963). The streamlines capture flow in the flowing regions, while transfer from fracture to matrix is accommodated as source/sink terms in the transport equations along streamlines. Di Donato et al. (2003) applied this methodology to study capillary-controlled transfer between fracture and matrix and demonstrated that using streamlines allowed multimillion-cell models to be run using standard computing resources. They showed that the run time could be orders of magnitude smaller than equivalent conventional grid-based simulation (Huang et al. 2004). This streamline approach has been applied by other authors (Al-Huthali and Datta-Gupta 2004) who have extended the method to include gravitational effects, gas displacement, and dual-permeability simulation, where there is also flow in the matrix. Thiele et al. (2004) have described a commercial implementation of a streamline dual-porosity model based on the work of Di Donato et al. that efficiently solves the 1D transport equations along streamlines.


2014 ◽  
Vol 17 (01) ◽  
pp. 82-97 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features of many well-known reservoirs. Naturally fractured reservoirs contain fractures in igneous, metamorphic, and sedimentary formations. Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to many fractures with varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (i.e., not a connected-network fracture system). New semianalytical solutions are used to understand the pressure behavior of naturally fractured reservoirs containing a network of discrete and/or connected (continuous) finite- and infinite-conductivity fractures. We present an extensive literature review of the pressure-transient behavior of fractured reservoirs. First, we show that the Warren and Root (1963) dual-porosity model is a fictitious homogeneous porous medium because it does not contain any fractures. Second, by use of the new solutions, we show that for most naturally fractured reservoirs, the Warren and Root (1963) dual-porosity model is inappropriate and fundamentally incomplete for the interpretation of pressure-transient well tests because it does not capture the behavior of these reservoirs. We examined many field well tests published in the literature. With few exceptions, none of them shows the behavior of the Warren and Root (1963) dual-porosity model. These examples exhibit very diverse pressure behaviors of discretely and continuously fractured reservoirs. Unlike the single derivative shape of the Warren and Root (1963) model, the derivatives of these examples exhibit many different flow regimes depending on fracture distribution and on their intensity and conductivity. We show these flow regimes with our new model for discretely and continuously fractured reservoirs. Most well tests published in the literature do not exhibit the Warren and Root (1963) dual-porosity reservoir-model behavior. If we interpret them by use of this dual-porosity model, then the estimated permeability, skin factor, interporosity flow coefficient (λ), and storativity ratio (ω) will not represent the actual reservoir parameters.


Sign in / Sign up

Export Citation Format

Share Document