light oil
Recently Published Documents


TOTAL DOCUMENTS

777
(FIVE YEARS 137)

H-INDEX

31
(FIVE YEARS 7)

2022 ◽  
Vol 961 (1) ◽  
pp. 012001
Author(s):  
Ahmed Alaa Hussein ◽  
Zahraa S. Mahdi ◽  
Nagam Obaid Kariem

Abstract The study aims to use the fixed box model to calculate the spread of pollutants (CO2, SO2, NOX, particulate) resulting from the burning of fuel used to produce electrical energy in the Nasiriyah city and to know the way they spread in the city through being affected by the wind speed and compare the results calculated from the model with the results measured by the lancom4 device. The results showed that the main pollutants for the air in Nasiriyah was emitted from burning the fuel used for the production of electric power, and the results showed that the concentration of pollutants (CO2, SO2, NOX) was much higher inside the city when compared with the upstream direction of the winds due to its increase with the movement of winds and its entry into the city. Through the application of the fixed box model and when comparing the calculated results through the model with the results measured by the lancom4 device, the error rate was (4 %, 2%, 2%, 5%) for pollutants (CO2, SO2, NOX, particulate) respectively, it was also observed that the highest emission rate of pollutants was result from using heavy fuel (fuel oil) and the lowest emission was from light oil (Dry gas). We noted the spread of pollutants and dilution in the atmosphere increases with the increase in wind speed, excluding for particles mater.


2021 ◽  
Vol 35 (6) ◽  
pp. 85-93
Author(s):  
Si-Kuk Kim ◽  
Byeong-Kil Chae ◽  
Yong-Taek Han

Investigation techniques for fire prevention in low-temperature warehouses were studied using energy dispersive X-ray fluorescence (ED-XRF). In the first experiment, a sample (galvanized steel sheet plus urethane foam plus sandwich panel) was burned with 500 mL of a flammable liquid (gasoline, thinner, kerosene, and light oil)/ Then, the component change of the sample was measured. In the combustion experiment, there was a difference in the heat of combustion depending on the type of flammable liquid; however, as a result of measuring the component change of the sample with ED-XRF after combustion, the largest component change was measured in the combustion experiment with gasoline. The change was in the order of thinner, kerosene, and diesel. Using ED-XRF, it was possible to distinguish the flammable liquid used in the experiment by measuring the component change of the sample resulting from the difference in the combustion heat of the flammable liquid. A second experiment was conducted under the same conditions as the first experiment, assuming a fire brigade fire suppression condition, and the combustion time of the flammable liquid was limited to 600 s. A combustion characteristic of flammable liquids is that the temperature and heat flux reach the maximum value within 300 s after the start of combustion regardless of the type of liquid. Because the change of composition was confirmed in the order of light oil, it was possible to distinguish the flammable liquid used at the fire site using the ED-XRF measurement result.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8520
Author(s):  
Ronald Ssebadduka ◽  
Nam Nguyen Hai Le ◽  
Ronald Nguele ◽  
Olalekan Alade ◽  
Yuichi Sugai

Herein, we show the prediction of the viscosity of a binary mixture of bitumen and light oil using a feedforward neural network with backpropagation model, as compared to empirical models such as the reworked van der Wijk model (RVDM), modified van der Wijk model (MVDM), and Al-Besharah. The accuracy of the ANN was based on all of the samples, while that of the empirical models was analyzed based on experimental results obtained from rheological studies of three binary mixtures of light oil (API 32°) and bitumen (API 7.39°). The classical Mehrotra–Svrcek model to predict the viscosity of bitumen under temperature and pressure, which estimated bitumen results with an %AAD of 3.86, was used along with either the RVDM or the MVDM to estimate the viscosity of the bitumen and light oil under reservoir temperature and pressure conditions. When both the experimental and literature data were used for comparison to an artificial neural network (ANN) model, the MVDM, RVDM and Al-Besharah had higher R2 values.


2021 ◽  
Vol 413 ◽  
pp. 77-83
Author(s):  
Hassan Soleimani ◽  
Hassan Ali ◽  
Noorhana Yahya ◽  
Leila Khodapanah ◽  
Maziyar Sabet ◽  
...  

The continuing depletion of light oil supplies and the rapidly growing demand for energy are forcing oil and gas companies to explore unconventional oil extraction techniques. The structure and flow rate implies an impact on the trapping and mobilization of oil in the reservoir. This article studies the effect of pore geometry and dynamics on water-oil displacement as a two-phase flow system. The pore geometries of sandstone were extracted using the non-destructive 3D micro computational tomography (micro-CT) technique. Two-phase flow simulations were performed using COMSOL Multiphysics on the micro-CT images to show the effect of the capillary number and the flow pattern. Velocity and relative permeability of the non-wetting phase at different points of the porous structure was computed. The effect of viscosity of wetting fluid on the pore structure was also studied to evaluate the parameters affecting enhanced oil recovery (EOR).


2021 ◽  
Author(s):  
Chanh Cao Minh ◽  
Vikas Jain ◽  
David Maggs ◽  
Kais Gzara

Abstract We have shown previously that while total porosity is the weighted sum of density and neutron porosities, hydrocarbon volume is the weighted difference of the two. Thus, their ratio yields hydrocarbon, or equivalently, water saturation (Sw). In LWD environments where negligible invasion takes place while drilling, we investigate whether Sw derived from LWD density-neutron logs could approach true Sw in unknown or mixed water salinity environments. In such environments, it is well known that Sw determined from standalone resistivity or capture sigma logs is uncertain due to large water resistivity (Rw) or capture sigma (Σw) changes with salinity. On the other hand, the water density (ρw) and hydrogen index (HIw) variations with salinity are much less (Table 1). Hence, the water point on the density neutron crossplot does not move with salinity as much as the water point on a sigma-porosity crossplot does. Similarly, the water point on a resistivity-porosity Pickett plot would move drastically with changes in Rw. Also, because the hydrocarbon effect on density-neutron logs is much less in oil than in gas, the weights in the density-neutron porosities can be conveniently set at midpoint in light oil-bearing reservoirs without compromising porosity and saturation results. Thus, a quicklook estimate of Sw from density-neutron logs is the normalized ratio of the difference over the sum of density and neutron porosities. The normalization factor is a function of the hydrocarbon density. We also build a graphical Sw overlay for petrophysical insights. We tested the LWD density-neutron derived Sw in two Middle East carbonate oil wells that have mixed salinity. The two wells were extensively studied in the past. In the first well, the reference Sw is given by the joint-inversion of resistivity-sigma logs, corroborated with Sw estimated from multi-measurements time-lapsed analysis, and validated with water analysis on water samples taken by formation testers. In the second well, comprehensive wireline measurements targeting mixed salinity such as dielectric and 3D NMR were acquired to derive Sw, and complemented by formation tester sampling, core measurements, and LWD resistivity-sigma Sw. In both wells, density-neutron quicklook Sw agrees surprisingly well with Sw from other techniques. It may lack the accuracy and precision and the continuous salinity output but is sufficient to pinpoint both flooded zones and bypassed oil zones. Since density-neutron is part of triple-combo data that are first available in well data acquisition, it is recommended to go beyond porosity application and compute water saturation (Sw) in unknown or mixed salinity environments. The computation is straightforward and can be useful to complement other established techniques for quick evaluation in unknown or mixed water salinity environments.


2021 ◽  
Author(s):  
Arit Igogo ◽  
Hani El Sahn ◽  
Sara Hasrat Khan ◽  
Yatindra Bhushan ◽  
Suhaila Humaid Al Mazrooei ◽  
...  

Abstract Carbonate reservoir X has varying levels of maturity in terms of development. The South/West is highly matured; development activities have recently kicked-off in the Crestal part while the areas towards the Far North is not fully developed and posed the largest uncertainty in terms of reservoir quality, fluid contacts, oil saturation, well injectivity/ productivity, area potential and reserves due to poor well control. In reservoir X with segmented development areas, patches of bitumen have been found in the Far North. The extent of this Bitumen was unknown. In order to expand the CO2 development concept to achieve production target from the Far Northern flank, an understanding and mitigation of the area uncertainties is crucial. Reservoir bitumen is a highly viscous, asphaltene rich hydrocarbon that affects reservoir performance. Distinguishing between producible oil and reservoir bitumen is critical for recoverable hydrocarbon volume calculations and production planning, yet the lack of resistivity and density contrast between the reservoir bitumen and light oil makes it difficult, if not impossible, to make such differentiation using only conventional logs such as neutron, density, and resistivity. This paper highlights the utilization and integration of advanced logging tools such as nuclear magnetic resonance and dielectric, in conjunction with routine logs, pressure points, RCI samples, vertical interference test and core data to differentiate between reservoir bitumen and other hydrocarbon types in the pore space. The major findings from the studies shows bitumen doesn't form as a single layer but occurs in different subzones as patches which is a challenge for static modelling. When high molecular weight hydrocarbons are distributed in the pore space and coexist with light and producible hydrocarbons, reservoir bitumen is likely to block pore throats. The Bitumen present in this reservoir have a log response similar to conventional pore fluids. The outcome of this study has helped in refining the bitumen boundary, optimize well placement, resolved the uncertainties associated with deeper fluid contacts and provided realistic estimate of STOIIP.


2021 ◽  
Author(s):  
Gehad Mahmoud Saad

Abstract Remote gas wells unloading and remote field well testing becomes more challenging because of H.S.E. hazards and cost-saving. This process adds to environmental footprint concerns in the oil and gas industry. Also, government laws and restrictions become one of the main stoppers for this process that could deviate the project from safe operating status by introducing new risks and hazards. This paper introduces two cases related to oil and gas flaring. In the first case, the high-pressure gas wells uploading within the remote area requires high-pressure equipment and high-pressure pumps that suit condensate pumping; some availability issues hurdle this operation in many countries. Adding to that, the high-cost addition faces the planning operation when renting the special equipment needed. Alternative condensate flaring is considered nowadays forbidden in most countries' regulations and laws. Innovative practices and equipment modifications were built and applied to secure both environment and cost. In this method, the sound power is utilized after the unloading and testing to circulate the condensate from the tanks to the separator with a low-pressure pump then divert well flow to the division and the pipeline. The process reduces condensate pumping risk, and zero flaring were achieved. More than 3000 bbls of condensate were circulated monthly to the gas facility without affecting the operation procedures. The company applied this process to all testing equipment and considered it in the new contracts as a technical acceptance factor. Therefore, hazardous waste was reduced, emissions decreased, and safer operation is guaranteed for workers was observed. In the second case, the remote field requires a strong appraisal program, including long-term production and injection tests; meanwhile, interference between wells adds essential value before proceeding with the entire field development plan. This work presents a successful and valuable case supporting technical team decisions while considering H.S.E. as a priority. A field case study discussed in this paper presented the reduction of condensate trucking risk and achieved zero oil flaring. Sixty thousand bbls of light oil were injected safely within two months long term test to the same producer. An injectivity test for another reservoir was conducted without additional cost and without affecting the operation procedures. Besides the above-stated advantages of applying the new process in both cases, this process also can work in the high pressure and risky wills. Therefore, guaranteeing zero flaring and ensuring a lower carbon footprint while supporting the third corner of H.S.E., the environment while saving costs, can always be achieved.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121612
Author(s):  
Jiyuan Fan ◽  
Aiping Chen ◽  
Saumitra Saxena ◽  
Sundaramurthy Vedachalam ◽  
Ajay K. Dalai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document