Two-dimensional speckle tracking echocardiography in goats: repeatability, variability, and validation of the technique using an exercise test and an experimentally induced acute ischemic cardiomyopathy.
Abstract Background Two-dimensional speckle tracking (2DST) technique has been validated in numerous animal species, but neither studies of repeatability nor measurements after exercise or in animals with cardiac disease have been reported in goats. Goats are an attractive candidate for animal models in human cardiology because they are easy to handle and have a body and heart size comparable to that of humans. Therefore, the aim of this study was to validate this technique in goats for further clinical and experimental applications in this species. Results This study was divided into several steps. First, a standardized echocardiographic protocol was performed and 5 cineloops of a right parasternal short-axis view at papillary muscles level were recorded three times at one-day intervals in ten healthy adult unsedated Saanen goats to test repeatability and variability of 2DST measurements. Then, the same measurements were performed immediately before and after a standardized exercise on treadmill in seven of the goats, and at 24h after induction of an experimental ischemic cardiomyopathy in five of the goats, to test the reliability of the technique to assess physiological and pathological changes. Average and regional measurements of radial and circumferential strain and strain rate, radial displacement, rotation and rotation rate were obtained. Comparisons were performed using two-way ANOVA (p<0.05). Caprine 2DST average measurements have demonstrated a good repeatability with a low to moderate variability for all measurements except for the diastolic peaks of the circumferential strain rate, radial strain rate and rotation rate. Segmental 2DST measurements were less repeatable than average measurements. Time effect of two-way ANOVA was significant for anteroseptal segment diastolic peaks measurements, rotation and rotation rate measurements. Overall variability of segmental measurements was moderate or high. Segmental and average peak values obtained after exercise and after myocardial ischemia were significantly different than curves obtained at baseline. Conclusions The results of this study are consistent with those previously described in other animal species and humans. 2DST echocardiography is a valid technique to evaluate physiological and pathological changes in myocardial function in goats, despite the technical limitations observed in this species.