Multiple Iteractive Labeling by Antibody Neodeposition (MILAN)

2019 ◽  
Author(s):  
Giorgio Cattoretti ◽  
Francesca Maria Bosisio ◽  
Lukas Marcelis ◽  
Maddalena Maria Bolognesi

Abstract Multiplexing, labeling for multiple immunostains the very same cell or tissue section in situ, is of considerable interest. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, scarcity of specialized skills or facilities. We have validated and detail here a method based on common primary and secondary antibodies, diffusely available fluorescent image scanners and routinely processed tissue sections \(FFPE). It entails rounds of four-color indirect immunofluorescence, image acquisition and removal \(stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulphide cleavage. In excess of 50 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software.

2019 ◽  
Author(s):  
Giorgio Cattoretti ◽  
Francesca Maria Bosisio ◽  
Lukas Marcelis ◽  
Maddalena Maria Bolognesi

Abstract Multiplexing, labeling for multiple immunostains the very same cell or tissue section in situ, is of considerable interest. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, scarcity of specialized skills or facilities. We have validated and detail here a method based on common primary and secondary antibodies, diffusely available fluorescent image scanners and routinely processed tissue sections \(FFPE). It entails rounds of four-color indirect immunofluorescence, image acquisition and removal \(stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulphide cleavage. In excess of 50 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software.


2019 ◽  
Author(s):  
Giorgio Cattoretti ◽  
Francesca Maria Bosisio ◽  
Lukas Marcelis ◽  
Maddalena Maria Bolognesi

Abstract (What’s new in protocol Version 5: an expanded troubleshooting section, more validated antibodies)Multiplexing, labeling for multiple immunostains the very same cell or tissue section in situ, is of considerable interest. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, scarcity of specialized skills or facilities. We have validated and detail here a method based on common primary and secondary antibodies, diffusely available fluorescent image scanners and routinely processed tissue sections \(FFPE). It entails rounds of four-color indirect immunofluorescence, image acquisition and removal \(stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulphide cleavage. In excess of 50 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software.


2019 ◽  
Author(s):  
Giorgio Cattoretti ◽  
Francesca Maria Bosisio ◽  
Lukas Marcelis ◽  
Maddalena Maria Bolognesi

Abstract Multiplexing, labeling for multiple immunostains the very same cell or tissue section in situ, is of considerable interest. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, scarcity of specialized skills or facilities. We have validated and detail here a method based on common primary and secondary antibodies, diffusely available fluorescent image scanners and routinely processed tissue sections \(FFPE). It entails rounds of four-color indirect immunofluorescence, image acquisition and removal \(stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulphide cleavage. In excess of 50 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software.


2017 ◽  
Vol 65 (8) ◽  
pp. 431-444 ◽  
Author(s):  
Maddalena Maria Bolognesi ◽  
Marco Manzoni ◽  
Carla Rossana Scalia ◽  
Stefano Zannella ◽  
Francesca Maria Bosisio ◽  
...  

Multiplexing, labeling for multiple immunostains in the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labeled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, and scarcity of specialized skills or facilities. We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition, and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulfide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than 30 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Multiplexing on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.


2017 ◽  
Author(s):  
Maddalena Maria Bolognesi ◽  
Marco Manzoni ◽  
Carla Rossana Scalia ◽  
Stefano Zannella ◽  
Francesca Maria Bosisio ◽  
...  

ABSTRACTMultiplexing (mplx), labeling for multiple immunostains the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labelled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, scarcity of specialized skills or facilities.We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulphide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than thirty different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Mplx on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory and normal cells.


2018 ◽  
Vol 93 (7) ◽  
pp. 749-754
Author(s):  
Norbert Auer ◽  
Astrid Hrdina ◽  
Chaitra Hiremath ◽  
Sabine Vcelar ◽  
Martina Baumann ◽  
...  

2017 ◽  
Vol 49 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Nayana Damiani Macedo ◽  
Aline Rodrigues Buzin ◽  
Isabela Bastos Binotti Abreu de Araujo ◽  
Breno Valentim Nogueira ◽  
Tadeu Uggere de Andrade ◽  
...  

2009 ◽  
Vol 75 (6) ◽  
pp. 1734-1739 ◽  
Author(s):  
Luis E. Chávez de Paz

ABSTRACT The novel image analysis software package bioImage_L was tested to calculate biofilm structural parameters in oral biofilms stained with dual-channel fluorescent markers. By identifying color tonalities in situ, the software independently processed the color subpopulations and characterized the viability and metabolic activity of biofilms.


Sign in / Sign up

Export Citation Format

Share Document