Working Parameters Optimization of Hydrolysis-acidogenesis reactor in two stage anaerobic digestion of slaughterhouse Wastewater for Biogas Production

2020 ◽  
Author(s):  
Dejene Tsegaye Bedane ◽  
Mohammed Mazharuddin Khan ◽  
Seyoum Leta Asfaw

Abstract Background : Wastewater from agro-industries such as slaughterhouse is typical organic wastewater with high value of biochemical oxygen demand, chemical oxygen demand, biological organic nutrients (Nitrogen and phosphate) which are insoluble, slowly biodegradable solids, pathogenic and non-pathogenic bacteria and viruses, parasite eggs. Moreover it contains high protein and putrefies fast leading to environmental pollution problem. This indicates that slaughterhouses are among the most environmental polluting agro-industries. Anaerobic digestion is a sequence of metabolic steps involving consortiums of several microbial populations to form a complex metabolic interaction network resulting in the conversation of organic matter into methane (CH 4 ), carbon dioxide (CO 2 ) and other trace compounds. Separation of the phase permits the optimization of the organic loading rate and HRT based on the requirements of the microbial consortiums of each phase. The purpose of this study was to optimize the working conditions for the hydrolytic - acidogenic stage in two step/phase anaerobic digestion of slaughterhouse wastewater. The setup of the laboratory scale reactor was established at Center for Environmental Science, College of Natural Science with a total volume of 40 liter (36 liter working volume and 4 liter gas space). The working parameters for hydrolytic - acidogenic stage were optimized for six hydraulic retention time 1-6 days and equivalent organic loading rate of 5366.43 – 894.41 mg COD/L day to evaluate the effect of the working parameters on the performance of hydrolytic – acidogenic reactor. Result : The finding revealed that hydraulic retention time of 3 day with organic loading rate of 1,788.81 mg COD/L day was a as an optimal working conditions for the parameters under study for the hydrolytic - acidogenic stage. The degree of hydrolysis and acidification were mainly influenced by lower hydraulic retention time (higher organic loading rate) and highest values recorded were 63.92 % at hydraulic retention time of 3 day and 53.26% at hydraulic retention time of 2 day respectively. Conclusion : The finding of the present study indicated that at steady state the concentration of soluble chemical oxygen demand and total volatile fatty acids increase as hydraulic retention time decreased or organic loading rate increased from 1 day hydraulic retention time to 3 day hydraulic retention time and decreases as hydraulic retention time increase from 4 to 6 day. The lowest concentration of NH 4 + -N and highest degree of acidification was also achieved at hydraulic retention time of 3 day. Therefore, it can be concluded that hydraulic retention time of 3 day/organic loading rate of 1,788.81 mg COD/L .day was selected as an optimal working condition for the high performance and stability during the two stage anaerobic digestion of slaughterhouse wastewater for the hydrolytic-acidogenic stage under mesophilic temperature range selected (37.5℃). Keywords : Slaughterhouse Wastewater, Hydrolytic – Acidogenic, Two Phase Anaerobic Digestion, Optimal Condition, Agro-processing wastewater

2021 ◽  
Vol 296 ◽  
pp. 113064
Author(s):  
Carina Malinowsky ◽  
Willian Nadaleti ◽  
Letícia Rech Debiasi ◽  
Ailton João Gonçalves Moreira ◽  
Remy Bayard ◽  
...  

Author(s):  
Napisa Pattharaprachayakul ◽  
Narumon Kesonlam ◽  
Pongpitak Duangjumpa ◽  
Vilai Rungsardthong ◽  
Worakrit Suvajittanont ◽  
...  

Pineapple wastes are produced in huge amount during the industrial canning process of pineapple; in Thailand over 400,000 tons per annum of canned pineapple exported leaving behind the waste. Besides the pulps and peels as solid wastes, the squeezed pineapple liquid wastes (SPLW) extracted from solid wastes can also be used for anaerobic digestion. In the present study, the anaerobic digestion of liquid squeezed from industrial pineapple peels was carried out using a lab-scale hybrid reactor. The reactor was operated for over 170 days with the hydraulic retention time (HRT) of 20 days decreasing down to 5 days and simultaneous control of organic loading rate (OLR). Under controlled conditions in the hybrid reactor, pH was maintained at 6.5–7.6 by adding alkaline for anaerobic microbial activity. Results showed that the chemical oxygen demand (COD) removal efficiency was at ≥ 90% for all conditions. The biogas production (mL/day) increased thoroughly from longer HRT to shorter HRT, as same as methane production with the maximum values (HRT 5 days, OLR 5 g/COD/ day with recirculation) of 55,130 and 30,322 mL/day, respectively. Moreover, the highest yields of biogas and methane were also investigated under similar conditions with the values of 0.504 and 0.277 L/gCOD, respectively. Interestingly, this optimization of both HRT and OLR of lab-scale anaerobic digestion process could be further practically applied to pilot or industrial scale in canned pineapple factories for biogas production.


Sign in / Sign up

Export Citation Format

Share Document