anaerobic baffled reactor
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 66)

H-INDEX

39
(FIVE YEARS 5)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261458
Author(s):  
Dong Wei ◽  
Xinxin Zhang ◽  
Chunying Li ◽  
Min Zhao ◽  
Li Wei

Alkaline-surfactant-polymer (ASP) flooding technology is used to maximize crude oil recovery. However, the extensive use of alkaline materials makes it difficult to treat the water used. Here, an improved multi-zone anaerobic baffled reactor (ABR) using FeSO4 as electron acceptor was employed to treat the wastewater from ASP flooding technology, and the effects on major pollutants (hydrolyzed polyacrylamide, petroleum substances, surfactants suspended solids) and associated parameters (chemical oxygen demand, viscosity) were evaluated. Gas chromatography-mass spectrometry (GC-MS) was used to follow the degradation and evolution of organic compounds while high-throughput DNA sequencing was used to determine the bacterial diversity in the ABR. The results obtained after 90 d of operation showed decreases in all parameters measured and the highest mean removal rates were obtained for petroleum substances (98.8%) and suspended solids (77.0%). Amounts of petroleum substances in the ABR effluent could meet the requirements of a national standard for oilfield reinjection water. GC-MS analysis showed that a wide range of chemicals (e.g. aromatic hydrocarbons, esters, alcohols, ketones) could be sequentially removed from the influent by each zone of ABR. The high-throughput DNA sequencing showed that the bacteria Micropruina, Saccharibacteria and Synergistaceae were involved in the degradation of pollutants in the anaerobic and anoxic reaction zones, while Rhodobacteraceae and Aliihoeflea were the main functional microorganisms in the aerobic reaction zones. The results demonstrated that the improved ABR reactor had the potential for the treatment of wastewater from ASP flooding technology.


2021 ◽  
Vol 17 (2) ◽  
pp. 69-82
Author(s):  
Allen Kurniawan ◽  
Fatihaturrizky Amelia ◽  
Adhirajasa Wirayudhatama ◽  
Sulpa Yudha Prawira

This study developed a combination of Continuous Stirred Tank Reactor (CSTR) for the acid fermentation and the Anaerobic Baffled Reactor (ABR) post-denitrification through high nitrite injection. Volatile Fatty Acids (VFAs) as a substrate for the post-denitrification process were optimally produced in the acid fermentation process. The aim of this study was to obtain the estimation of biokinetic values to predict the effluent wastewater quality in ABR post-denitrification process under unsteady state. The reactor was operated for HRT 7 days at temperature 25-28 ˚C and pH 6-7,2. The influent and effluent substrate concentration were monitored continuously for 160 days. Post-denitrification biokinetic from the Contois equation resulted in the value of hydrolysis rate (Kh) of 0.077 day-1, the substrate transport rate (k) of 4.364×10-6 Lmg-1day-1, maximum specific growth rate (μmax) of 0.559 day-1, half saturation constant (KS) of 0.209 mgL-1, microbial decay coefficient (b) of 0.0145 days-1; yield coefficient (Y) of 0.084 g-VSSg-COD-1. The validation of biokinetic parameters based on statistical analysis showed fairly precise results following the trend of experimental data to determine the substrate concentration in the effluent unit. Therefore, the biokinetic values can be applied in the design of ABR post-denitrification using primary sludge incorporation with high strength nitrate.Keywords:  Anaerobic baffled reactor, biokinetics, Contois, hydrolysis, post-denitrification.


2021 ◽  
Vol 894 (1) ◽  
pp. 012017
Author(s):  
H Trihidayanti ◽  
R Ratnaningsih ◽  
B Iswanto

Abstract One of the foods favorites by Indonesian people is tofu. In the process of making tofu, it produces wastewater. The tofu wastewater must be treated first to reduce environmental pollution. To treat the liquid waste, it is using biological treatment by an anaerobic baffled reactor with bio-ball. The purpose of this study was to determine the optimum time at 75% tofu wastewater concentration. The detention time used in this study was 12 hours, 24 hours, 36 hours and 48 hours. Seeding takes time about 45 days, with the obtained VSS was 5550 mg/L. Furthermore, acclimatization in the reactor takes about 30 days, with an efficiency of removing COD of 86.3%. The results obtained that at 12 hours of detention, there is a COD allowance of 79.8%, 24 hours of detention time there is a COD allowance of 85.4%, 36 hours of detention time 86.3%, and 48 hours of detention time 88.4 %. It shows that the optimum detention time in this anaerobic reactor is 48 hours. However, the COD level was 765.3 mg/L is still slightly above the quality standard according to the Minister of Environment Regulation No.5 2014, which is the maximum COD level of 300 mg/L.


Author(s):  
Sugito Sugito ◽  
Rhenny Ratnawati ◽  
Herlina Afiafani

<span id="docs-internal-guid-e4ec4542-7fff-e572-3432-dc3c540a72ea"><span>Hybrid Anaerobic Baffled Reactor (HABR) is a development technology from the Anaerobic Baffled Reactor (ABR), which was already known as a technology that is successful in treating domestic waste. </span><span>Aims: </span><span>The objectives of these studies were to investigate the efficiency of reducing BOD and phosphate levels in HABR with zeolite (ZE) and activated carbon (AC) media. </span><span>Methodology and Results:</span><span> HABR reactor made of acrylic material with a size of 90 cm x 20 cm x 30 cm. The reactor designed has 7 compartments, with details the first 5 compartments are suspended growth microorganism reactors and the next 2 compartments are attached growth microorganism reactors. </span><span>Conclusion, significance, and impact of study:</span><span> The result of the research showed that the efficiency of reducing BOD concentration in the reactor with ZE and AC media were 59.30% and 65.12%, respectively. The final BOD concentration in the AC reactor is 30 mg/L, this value meets the domestic wastewater quality standard required by East Java Governor Regulation Number 72 of 2013 concerning Wastewater Quality Standards for Industry and/or Other Business Activities. The final BOD concentration in the ZE reactor exceeded the required quality standard with a value of 35 mg/L. The final phosphate levels of the two reactors meet the wastewater quality standards for business and/or laundry activities with a maximum phosphate concentration of 10 mg/L. The final phosphate levels in the ZE and AC reactors were 3.74 mg/L and 8.79 mg/L, respectively. The efficiency of phosphate removal in ZE and AC reactors were 70.58% and 30.87%, respectively.</span></span>


2021 ◽  
Vol 13 (18) ◽  
pp. 10461
Author(s):  
Yasmin Saif ◽  
Mahwish Ali ◽  
Ian M. Jones ◽  
Safia Ahmed

The present study explored the efficiency of a four-chambered anaerobic baffled reactor (ABR) as a cost-effective and sustainable method of organic pollutant and pathogen removal from domestic wastewater, under a range of environmental conditions. An ABR with a circular additional filter at the outlet pipe was constructed to treat wastewater from a residential colony of 108 households with an average inflow of 110 m3/day and a nominal hydraulic retention time (HRT) of 20 h. Analysis of the chemical oxygen demand (COD), total nitrogen, sulfate and phosphate load, and total coliform removal for 2 years of operation, 2015 and 2017, showed a COD of 46%, sulfate load of 28%, phosphate load of 51% and total nitrogen of 28% for 2015, compared to a COD of 48%, sulfate load of 44%, phosphate load of 58% and total nitrogen of 31% for 2017. The lack of a significant effect of sludge removal suggested a stable process. The overall efficiency of the ABR increased in the summer, including for pathogen removal, which was significantly higher during the summer months of both years. Overall, the ABR was found to be able to consistently treat primary wastewater, although tertiary effluent treatment was still required before water reuse or final discharge.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1648
Author(s):  
Cui Wang ◽  
Changyi Liu ◽  
Xiaoxiao Si ◽  
Cuixia Zhang ◽  
Fan Liu ◽  
...  

With the increase in industrialization and urbanization, water pollution has become increasingly serious, and wastewater treatment has become a common step in preventing this. For a greater understanding of the sustainability of different wastewater treatment systems, two processes, Anaerobic Baffled Reactor + Anaerobic-Anoxic-Oxic and Anaerobic Baffled Reactor + Cyclic Activated Sludge System, were selected, and their sustainability was evaluated based on three indicators, namely emergy yield ratio, environmental load rate, and emergy sustainability development index, according to emergy theory. The results show that the emergy yield ratio and environmental load rate of the ABR + CASS process were lower than those of the ABR + A2/O process, and the emergy sustainability development index of the ABR + CASS process was higher than that of the ABR + A2/O process, showing better sustainability. The research methods and findings of this study play an important role for decision makers in selecting sustainable wastewater treatment processes.


ACS Omega ◽  
2021 ◽  
Vol 6 (36) ◽  
pp. 23515-23527
Author(s):  
Na Liu ◽  
Yanbin Yun ◽  
Liming Hu ◽  
Linting Xin ◽  
Mengxia Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document