scholarly journals Comprehensive and Clinically Accurate Head and Neck Organs at Risk Delineation via Stratified Deep Learning: A Large-scale Multi-Institutional Study

Author(s):  
Dazhou Guo ◽  
Jia Ge ◽  
Xianghua Ye ◽  
Senxiang Yan ◽  
Yi Xin ◽  
...  

Abstract Accurate organ at risk (OAR) segmentation is critical to reduce the radiotherapy post-treatment complications. Consensus guidelines recommend a set of more than 40 OARs in the head and neck (H&N) region, however, due to the predictable prohibitive labor-cost of this task, most institutions choose a substantially simplified protocol by delineating a smaller subset of OARs and neglecting the dose distributions associated with other OARs. In this work we propose a novel, automated and highly effective stratified OAR segmentation (SOARS) system using deep learning to precisely delineate a comprehensive set of 42 H&N OARs. SOARS stratifies 42 OARs into anchor, mid-level, and small & hard subcategories, with specifically derived neural network architectures for each category by neural architecture search (NAS) principles. We built SOARS models using 176 training patients in an internal institution and independently evaluated on 1327 external patients across six different institutions. It consistently outperformed other state-of-the-art methods by at least 3-5% in Dice score for each institutional evaluation (up to 36% relative error reduction in other metrics). More importantly, extensive multi-user studies evidently demonstrated that 98% of the SOARS predictions need only very minor or no revisions for direct clinical acceptance (saving 90% radiation oncologists workload), and their segmentation and dosimetric accuracy are within or smaller than the inter-user variation. These findings confirmed the strong clinical applicability of SOARS for the OAR delineation process in H&N cancer radiotherapy workflows, with improved efficiency, comprehensiveness, and quality.

10.2196/26151 ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. e26151
Author(s):  
Stanislav Nikolov ◽  
Sam Blackwell ◽  
Alexei Zverovitch ◽  
Ruheena Mendes ◽  
Michelle Livne ◽  
...  

Background Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. Objective Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. Methods The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. Results We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. Conclusions Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.


2020 ◽  
Author(s):  
Stanislav Nikolov ◽  
Sam Blackwell ◽  
Alexei Zverovitch ◽  
Ruheena Mendes ◽  
Michelle Livne ◽  
...  

BACKGROUND Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. OBJECTIVE Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. METHODS The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. RESULTS We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. CONCLUSIONS Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.


2019 ◽  
Vol 104 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Ward van Rooij ◽  
Max Dahele ◽  
Hugo Ribeiro Brandao ◽  
Alexander R. Delaney ◽  
Berend J. Slotman ◽  
...  

2019 ◽  
Vol 138 ◽  
pp. 68-74 ◽  
Author(s):  
J. van der Veen ◽  
S. Willems ◽  
S. Deschuymer ◽  
D. Robben ◽  
W. Crijns ◽  
...  

2020 ◽  
Vol 16 ◽  
pp. 54-60
Author(s):  
Charlotte L. Brouwer ◽  
Djamal Boukerroui ◽  
Jorge Oliveira ◽  
Padraig Looney ◽  
Roel J.H.M. Steenbakkers ◽  
...  

2020 ◽  
Vol 15 ◽  
pp. 8-15 ◽  
Author(s):  
Ellen J.L. Brunenberg ◽  
Isabell K. Steinseifer ◽  
Sven van den Bosch ◽  
Johannes H.A.M. Kaanders ◽  
Charlotte L. Brouwer ◽  
...  

2018 ◽  
Vol 127 ◽  
pp. S217-S218 ◽  
Author(s):  
H. Bakker ◽  
D. Peressutti ◽  
P. Aljabar ◽  
L.V. Van Dijk ◽  
L. Van den Bosch ◽  
...  

2019 ◽  
Vol 133 ◽  
pp. S371
Author(s):  
J. Van der Veen ◽  
S. Willems ◽  
D. Robben ◽  
W. Crijns ◽  
F. Maes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document