scholarly journals New Optical Soliton Solutions For The Variable Coefficients Nonlinear Schrodinger Equation

Author(s):  
Yongyi Gu ◽  
Najva Aminakbari

Abstract This paper is appropriated to seek new optical soliton solutions of nonlinear Schrodinger equation (NLSE) with time-dependent coefficients which describes the dispersion decreasing fiber. By proposing Bernoulli (G ′/G)-expansion method, where G = G(ζ ) satisfies Bernoulli equation, some periodic wave, bright and dark soliton solutions are successfully achieved. In addition, 3D, line and contour maps graphs of the obtained results under effect of different values of coefficients are illustrated to have acceptable conception of dynamic structures.

2019 ◽  
Vol 10 (1) ◽  
pp. 219 ◽  
Author(s):  
Wei Gao ◽  
Hajar Farhan Ismael ◽  
Ahmad M. Husien ◽  
Hasan Bulut ◽  
Haci Mehmet Baskonus

In this paper, the cubic-quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation in parabolic law media are investigated to obtain the dark, singular, bright-singular combo and periodic soliton solutions. Two powerful methods, the m + G ′ G improved expansion method and the exp − φ ξ expansion method are utilized to construct some novel solutions of the governing equations. The obtained optical soliton solutions are presented graphically to clarify their physical parameters. Moreover, to verify the existence solutions, the constraint conditions are utilized.


1993 ◽  
Vol 50 (3) ◽  
pp. 457-476 ◽  
Author(s):  
Bernard Deconinck ◽  
Peter Meuris ◽  
Frank Verheest

Oblique propagation of MHD waves in warm multi-species plasmas with anisotropic pressures and different equilibrium drifts is described by a modified vector derivative nonlinear Schrödinger equation, if charge separation in Poisson's equation and the displacement current in Ampère's law are properly taken into account. This modified equation cannot be reduced to the standard derivative nonlinear Schrödinger equation, and hence requires a new approach to solitary-wave solutions, integrability and related problems. The new equation is shown to be integrable by the use of the prolongation method, and by finding a sufficient number of conservation laws, and possesses bright and dark soliton solutions, besides possible periodic solutions.


2001 ◽  
Vol 10 (04) ◽  
pp. 403-407 ◽  
Author(s):  
S. L. PALACIOS

An alternative set of soliton solutions for the nonlinear Schrödinger equation is found. When particular cases are analyzed it is shown that bright picosecond solitons are possible in the normal and anomalous dispersion regions of an optical fibre but dark picosecond solitons can only exist in the normal dispersion regime. Also, pulse peak power and width are determined.


Sign in / Sign up

Export Citation Format

Share Document