dispersion regime
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 932 ◽  
Author(s):  
G.E. Elsinga ◽  
T. Ishihara ◽  
J.C.R. Hunt

The Richardson-scaling law states that the mean square separation of a fluid particle pair grows according to t3 within the inertial range and at intermediate times. The theories predicting this scaling regime assume that the pair separation is within the inertial range and that the dispersion is local, which means that only eddies at the scale of the separation contribute. These assumptions ignore the structural organization of the turbulent flow into large-scale shear layers, where the intense small-scale motions are bounded by the large-scale energetic motions. Therefore, the large scales contribute to the velocity difference across the small-scale structures. It is shown that, indeed, the pair dispersion inside these layers is highly non-local and approaches Taylor dispersion in a way that is fundamentally different from the Richardson-scaling law. Also, the layer's contribution to the overall mean square separation remains significant as the Reynolds number increases. This calls into question the validity of the theoretical assumptions. Moreover, a literature survey reveals that, so far, t3 scaling is not observed for initial separations within the inertial range. We propose that the intermediate pair dispersion regime is a transition region that connects the initial Batchelor- with the final Taylor-dispersion regime. Such a simple interpretation is shown to be consistent with observations and is able to explain why t3 scaling is found only for one specific initial separation outside the inertial range. Moreover, the model incorporates the observed non-local contribution to the dispersion, because it requires only small-time-scale properties and large-scale properties.


2021 ◽  
Author(s):  
Yuhang Wu ◽  
Hamed Pourbeyram ◽  
Demetrios Christodoulides ◽  
Frank Wise

2021 ◽  
Author(s):  
Stefano Berti ◽  
Guillaume Lapeyre

<p>Oceanic motions at scales larger than few tens of km are quasi-horizontal due to seawater stratification and Earth’s rotation and are characterized by quasi-two-dimensional turbulence. At scales around 300 km (in the mesoscale range), coherent vortices contain most of the kinetic energy in the ocean. At scales around 10 km (in the submesoscale range) the flow is populated by smaller eddies and filamentary structures associated with intense gradients (e.g. of temperature), which play an important role in both physical and biogeochemical budgets. Such small scales are found mainly in the weakly stratified mixed layer, lying on top of the more stratified thermocline. Submesoscale dynamics should strongly depend on the seasonal cycle and the associated mixed-layer instabilities. The latter are particularly relevant in winter and are responsible for the generation of energetic small scales that are not trapped at the surface, as those arising from mesoscale-driven processes, but extend down to the thermocline. The knowledge of the transport properties of oceanic flows at depth, which is essential to understand the coupling between surface and interior dynamics, however, is still limited.</p><p>By means of numerical simulations, we explore Lagrangian pair dispersion in turbulent flows from a quasi-geostrophic model consisting in two coupled fluid layers (representing the mixed layer and the thermocline) with different stratification. Such a model has been previously shown to give rise to both meso and submesoscale instabilities and subsequent turbulent dynamics that compare well with observations of wintertime submesoscale flows. We focus on the identification of different dispersion regimes and on the possibility to relate the characteristics of the spreading process at the surface and at depth, which is relevant to assess the possibility of inferring the dynamical features of deeper flows from the experimentally more accessible (e.g. by satellite altimetry) surface ones.</p><p>Using different statistical indicators, we find a clear transition of dispersion regime with depth, which is generic and can be related to the statistical features of the turbulent flows. The spreading process is local (namely, governed by eddies of the same size as the particle separation distance) at the surface. In the absence of a mixed layer it rapidly changes to nonlocal (meaning essentially driven by the largest eddies) at small depths, while in the opposite case this only occurs at larger depths, below the mixed layer. We then identify the origin of such behavior in the existence of fine-scale energetic structures due to mixed-layer instabilities. We further discuss the effect of vertical shear and address the properties of the relative motion of subsurface particles with respect to surface ones. In the absence of a mixed layer, the properties of the spreading process are found to rapidly decorrelate from those at the surface, but the relation between the surface and subsurface dispersion appears to be largely controlled by vertical shear. In the presence of mixed-layer instabilities, instead, the statistical properties of dispersion at the surface are found to be a good proxy for those in the whole mixed layer.</p>


2021 ◽  
Author(s):  
Zi Wu ◽  
Arvind Singh ◽  
Efi Foufoula-Georgiou ◽  
Michele Guala ◽  
Xudong Fu ◽  
...  

<p>Bedload particle hops are defined as successive motions of a particle from start to stop, characterizing one of the most fundamental processes describing bedload sediment transport in rivers. Although two transport regimes have been recently identified for short- and long-hops, respectively <strong>(Wu et al., <em>Water Resour Res</em>, 2020)</strong>, there still lacks a theory explaining how the mean hop distance-travel time scaling may extend to cover the phenomenology of bedload particle motions. Here we propose a velocity-variation based formulation, and for the first time, we obtain analytical solution for the mean hop distance-travel time relation valid for the entire range of travel times, which agrees well with the measured data <strong>(Wu et al., <em>J Fluid Mech</em>, 2021)</strong>. Regarding travel times, we identify three distinct regimes in terms of different scaling exponents: respectively as ~1.5 for an initial regime and ~5/3 for a transition regime, which define the short-hops; and 1 for the so-called Taylor dispersion regime defining long-hops. The corresponding probability density function of the hop distance is also analytically obtained and experimentally verified. </p>


Author(s):  
Binoy Krishna Ghosh ◽  
Somen Adhikary ◽  
Roshmi Chatterjee ◽  
Debasruti Chowdhury ◽  
Navonil Bose ◽  
...  

2020 ◽  
Vol 31 ◽  
Author(s):  
Bien Chu Van ◽  
Dinh Quang Ho ◽  
Le Thi Ha ◽  
Van Cao Long ◽  
Vu Van Hung ◽  
...  

A photonic crystal fiber with a hollow core filled with carbon disulfide (CS2) is proposed as a new source of supercontinuum light. We numerically study guiding properties of modeled fibers including the dispersion and the effective mode area of the fundamental mode. As a result, octave spanning of the SC spectrum was achieved in the wavelength range of near-IR from 1.25 μm to 2.3 μm with 90 fs pulse and energy of 1.5 nJ at a pump wavelength of 1.55 μm. The proposed fibers are fully compatible with all-silica fiber systems, in particular, could be used for all-fiber SC sources and new low-cost all-fiber optical systems.


Sign in / Sign up

Export Citation Format

Share Document