scholarly journals The Impacts of G4S Mutation on N-glycosylation and conformation of the Human Coagulation Factor IX GLA domain: In silico and In vitro Analysis

Author(s):  
Fahimeh Ghasemi ◽  
Mina Maddah ◽  
Hourieh Kalhor ◽  
Mohsen Khorashadizadeh ◽  
Alireza Zomorodipour

Abstract Missense mutations are the most prevalent form of mutation in hemophilia B patients. These alterations may result in the creation of novel and non-native N-glycosylation sites (Asn-X-Ser/Thr) through single amino acid substitutions. The pathogenic mechanisms of N-glycosylation mutations in hemophilia B patients have not been extensively studied yet. By survey among known missense mutations, we found only one N-glycosylation mutation in the γ-carboxyglutamic-rich (GLA) domain of the human coagulation factor IX (hFIX). This mutation that was reported in patients with mild and moderate hemophilia B, is caused by G4S amino acid substitution. To investigate the possibility of glycan attachment to the novel N-glycosylation site in G4S-mutant hFIX and the occurrence of hyperglycosylation, site-directed mutagenesis was applied to introduce the selected mutation into the coding sequence of the hFIX. The nucleotide sequences of the both native and G4S-mutant hFIX were separately cloned into the pcDNA3.1 expression plasmid and transiently expressed in HEK293T cells. Our results from gradient SDS-PAGE and western blotting analysis of the both recombinant native and mutant hFIX demonstrated no glycan attachment to the new N-glycosylation site in the G4S-mutant hFIX. Molecular dynamics (MD) simulation was also conducted to provide atomistic insights into structure and behavior of the native and G4S-mutant GLA domains in the both free and membrane-bound states. The results revealed that the mutation slightly affected the dynamic behavior of the mutant GLA domain. The conformational analysis proved that the native GLA domain had less fluctuation and more stability than the mutant GLA domain. The slight conformational changes may influence the binding capacity and interaction of the mutant GLA domain to phospholipid bilayer which is necessary for coagulation activity of the hFIX. These findings were in accordance with the nature of the G4S mutation which causes mild hemophilia B.

2018 ◽  
Vol 10 ◽  
pp. 29-37 ◽  
Author(s):  
Alfred Weber ◽  
Andrea Engelmaier ◽  
Dirk Voelkel ◽  
Robert Pachlinger ◽  
Friedrich Scheiflinger ◽  
...  

Blood ◽  
2016 ◽  
Vol 127 (14) ◽  
pp. 1761-1769 ◽  
Author(s):  
Elena Santagostino ◽  
Uri Martinowitz ◽  
Toshko Lissitchkov ◽  
Brigitte Pan-Petesch ◽  
Hideji Hanabusa ◽  
...  

Key Points rIX-FP maintains mean trough of 20 and 12 IU/dL FIX activity with 40 IU/kg weekly and 75 IU/kg every 2 weeks prophylaxis, respectively. Weekly and 14-day prophylaxis regimens with rIX-FP were well tolerated and provided low bleeding rates and target joint improvement.


Blood ◽  
2012 ◽  
Vol 120 (12) ◽  
pp. 2405-2411 ◽  
Author(s):  
Elena Santagostino ◽  
Claude Negrier ◽  
Robert Klamroth ◽  
Andreas Tiede ◽  
Ingrid Pabinger-Fasching ◽  
...  

Abstract A recombinant fusion protein linking coagulation factor IX (FIX) with human albumin (rIX-FP) has been developed to facilitate hemophilia B treatment by less frequent FIX dosing. This first-in-human dose-escalation trial in 25 previously treated subjects with hemophilia B (FIX ≤ 2 IU/dL) examined the safety and pharmacokinetics of 25, 50, and 75 IU/kg rIX-FP. Patients in the 50-IU/kg cohort underwent a comparative pharmacokinetics assessment with their previous FIX product (plasma-derived or recombinant). No allergic reactions or inhibitors were observed. Four mild, possibly treatment-related adverse events were reported. In the 50-IU/kg cohort (13 subjects), the mean half-life of rIX-FP was 92 hours, more than 5 times longer than the subjects' previous FIX product. After 25 or 50 IU/kg rIX-FP administration, the baseline-corrected mean FIX activity remained elevated at day 7 (7.4 IU/dL and 13.4 IU/dL, respectively) and day 14 (2.5 IU/dL and 5.5 IU/dL, respectively). The incremental recovery of rIX-FP was higher than both recombinant and plasma-derived FIX (1.4 vs 0.95 and 1.1 IU/dL per IU/kg, respectively). These results demonstrated both the safety and improved pharmacokinetics of rIX-FP, thus indicating this new product with extended half-life as possibly able to control and prevent bleeding with less frequent injection. The trial was registered at www.clinicaltrials.gov as no. NCT01233440.


Sign in / Sign up

Export Citation Format

Share Document