population pharmacokinetic
Recently Published Documents


TOTAL DOCUMENTS

2590
(FIVE YEARS 817)

H-INDEX

73
(FIVE YEARS 8)

2022 ◽  
Vol 9 ◽  
Author(s):  
Steven J. Keogh ◽  
Jean-Hugues Dalle ◽  
Rick Admiraal ◽  
Michael A. Pulsipher

Serotherapy comprising agents such as anti-thymocyte globulin, anti-T-lymphocyte globulin, and the anti-CD52 monoclonal antibody alemtuzumab is used widely to reduce the incidence of graft-versus-host disease (GvHD) after paediatric haematopoietic stem cell transplantation (HSCT). The outcome of transplants using matched unrelated donors now approaches that of matched sibling donors. This is likely due to better disease control in recipients, the use of donors more closely human-leukocyte antigen (HLA)-matched to recipients, and more effective graft-versus-host disease (GvHD) prophylaxis. The price paid for reduced GvHD is slower immune reconstitution of T cells and thus more infections. This has led to studies looking to optimise the amount of serotherapy used. The balance between prevention of GvHD on one side and prevention of infections and relapse on the other side is quite delicate. Serotherapy is given with chemotherapy-/radiotherapy-based conditioning prior to HSCT. Due to their long half-lives, agents used for serotherapy may be detectable in patients well after graft infusion. This exposes the graft-infused T cells to a lympholytic effect, impacting T-cell recovery. As such, excessive serotherapy dosing may lead to no GvHD but a higher incidence of infections and relapse of leukaemia, while under-dosing may result in a higher chance of serious GvHD as immunity recovers more quickly. Individualised dosing is being developed through studies including retrospective analyses of serotherapy exposure, population pharmacokinetic modelling, therapeutic drug monitoring in certain centres, and the development of dosing models reliant on factors including the patient's peripheral blood lymphocyte count. Early results of “optimal” dosing strategies for serotherapy and conditioning chemotherapy show promise of improved overall survival.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xingchen Bian ◽  
Xiaofen Liu ◽  
Fupin Hu ◽  
Meiqing Feng ◽  
Yuancheng Chen ◽  
...  

The latest PK/PD findings have demonstrated negligible efficacy of intravenous polymyxins against pulmonary infections. We investigated pharmacokinetic/pharmacodynamic (PK/PD)-based breakpoints of polymyxin B for bloodstream infections and the rationality of the recent withdrawal of polymyxin susceptibility breakpoints by the CLSI. Polymyxin B pharmacokinetic data were obtained from a phase I clinical trial in healthy Chinese subjects and population pharmacokinetic parameters were employed to determine the exposure of polymyxin B at steady state. MICs of 1,431 recent clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae collected from across China were determined. Monte-Carlo simulations were performed for various dosing regimens (0.42–1.5 mg/kg/12 h via 1 or 2-h infusion). The probability of target attainment, PK/PD breakpoints and cumulative fraction of response were determined for each bacterial species. MIC90 of polymyxin B was 1 mg/L for P. aeruginosa and 0.5 mg/L for A. baumannii and K. pneumoniae. With the recommended polymyxin B dose of 1.5–2.5 mg/kg/day, the PK/PD susceptible breakpoints for P. aeruginosa, A. baumannii and K. pneumoniae were 2, 1 and 1 mg/L respectively for bloodstream infection. For Chinese patients, polymyxin B dosing regimens of 0.75–1.5 mg/kg/12 h for P. aeruginosa and 1–1.5 mg/kg/12 h for A. baumannii and K. pneumoniae were appropriate. Breakpoint determination should consider the antimicrobial PK/PD at infection site and delivery route. The recent withdrawal of polymyxin susceptible breakpoint by CLSI primarily based on poor efficacy against lung infections needs to be reconsidered for bloodstream infections.


2022 ◽  
Vol 12 ◽  
Author(s):  
SiChan Li ◽  
SanLan Wu ◽  
WeiJing Gong ◽  
Peng Cao ◽  
Xin Chen ◽  
...  

Purpose: The aims of this study were to establish a joint population pharmacokinetic model for voriconazole and its N-oxide metabolite in immunocompromised patients, to determine the extent to which the CYP2C19 genetic polymorphisms influenced the pharmacokinetic parameters, and to evaluate and optimize the dosing regimens using a simulating approach.Methods: A population pharmacokinetic analysis was conducted using the Phoenix NLME software based on 427 plasma concentrations from 78 patients receiving multiple oral doses of voriconazole (200 mg twice daily). The final model was assessed by goodness of fit plots, non-parametric bootstrap method, and visual predictive check. Monte Carlo simulations were carried out to evaluate and optimize the dosing regimens.Results: A one-compartment model with first-order absorption and mixed linear and concentration-dependent-nonlinear elimination fitted well to concentration-time profile of voriconazole, while one-compartment model with first-order elimination well described the disposition of voriconazole N-oxide. Covariate analysis indicated that voriconazole pharmacokinetics was substantially influenced by the CYP2C19 genetic variations. Simulations showed that the recommended maintenance dose regimen would lead to subtherapeutic levels in patients with different CYP2C19 genotypes, and elevated daily doses of voriconazole might be required to attain the therapeutic range.Conclusions: The joint population pharmacokinetic model successfully characterized the pharmacokinetics of voriconazole and its N-oxide metabolite in immunocompromised patients. The proposed maintenance dose regimens could provide a rationale for dosage individualization to improve clinical outcomes and minimize drug-related toxicities.


2022 ◽  
Author(s):  
Kevin J Downes ◽  
Austyn Grim ◽  
Laura Shanley ◽  
Ronald C Rubenstein ◽  
Athena F Zuppa ◽  
...  

Background: Extended interval dosing (EID) of tobramycin is recommended for treatment of pulmonary exacerbations in adults and older children with cystic fibrosis (CF), but data are limited in patients less than 5 years of age.Methods:We performed a retrospective population pharmacokinetic (PK) analysis of hospitalized children with CF <5 years of age prescribed intravenous tobramycin for a pulmonary exacerbation from March 2011 to September 2018 at our hospital. Children with normal renal function who had ≥1 tobramycin concentration available were included. Nonlinear mixed effects population PK modeling was performed using NONMEM® using data from the first 48 hours of tobramycin treatment. Monte Carlo simulations were implemented to determine the fraction of simulated patients that met published therapeutic targets with regimens of 10-15 mg/kg/day once daily dosing. Results:Fifty-eight patients received 111 tobramycin courses (range 1-9/patient). A 2-compartment model best described the data. Age, glomerular filtration rate, and vancomycin coadministration were significant covariates on tobramycin clearance. The typical values of clearance and central volume of distribution were 0.252 L/hr/kg^0.75 and 0.308 L/kg, respectively. No once daily regimens achieved all pre-specified targets simultaneously in >75% of simulated subjects. A dosage of 13 mg/kg/dose best met the predefined targets of Cmax >25 mg/L and AUC24 of 80-120 mg*h/L.Conclusions:Based on our population PK analysis and simulations, once daily dosing of tobramycin would not achieve all therapeutic goals in young patients with CF. However, extended-interval dosing regimens may attain therapeutic targets in the majority of young patients.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Kenneth H. Wills ◽  
Stephen J. Behan ◽  
Michael J. Nance ◽  
Jessica L. Dawson ◽  
Thomas M. Polasek ◽  
...  

Background: Clozapine is a key antipsychotic drug for treatment-resistant schizophrenia but exhibits highly variable pharmacokinetics and a propensity for serious adverse effects. Currently, these challenges are addressed using therapeutic drug monitoring (TDM). This study primarily sought to (i) verify the importance of covariates identified in a prior clozapine population pharmacokinetic (popPK) model in the absence of environmental covariates using physiologically based pharmacokinetic (PBPK) modelling, and then to (ii) evaluate the performance of the popPK model as an adjunct or alternative to TDM-guided dosing in an active TDM population. Methods: A popPK model incorporating age, metabolic activity, sex, smoking status and weight was applied to predict clozapine trough concentrations (Cmin) in a PBPK-simulated population and an active TDM population comprising 142 patients dosed to steady state at Flinders Medical Centre in Adelaide, South Australia. Post hoc analyses were performed to deconvolute the impact of physiological and environmental covariates in the TDM population. Results: Analysis of PBPK simulations confirmed age, cytochrome P450 1A2 activity, sex and weight as physiological covariates associated with variability in clozapine Cmin (R2 = 0.7698; p = 0.0002). Prediction of clozapine Cmin using a popPK model based on these covariates accounted for <5% of inter-individual variability in the TDM population. Post hoc analyses confirmed that environmental covariates accounted for a greater proportion of the variability in clozapine Cmin in the TDM population. Conclusions: Variability in clozapine exposure was primarily driven by environmental covariates in an active TDM population. Pharmacokinetic modelling can be used as an adjunct to TDM to deconvolute sources of variability in clozapine exposure.


Sign in / Sign up

Export Citation Format

Share Document