scholarly journals Rock Fragment Content in Soils Shift Root Foraging Behavior in Xerophytic Species

Author(s):  
Hui Hu ◽  
Weikai Bao ◽  
David M. Eissenstat ◽  
Long Huang ◽  
Fanglan Li

Abstract Aims Root traits associated with resource foraging, including fine-root branching intensity, root hair and mycorrhiza, may change in soils with various physical structure indicated by rock fragment content (RFC), while how these traits covariate at the level of individual root branching order is largely unknown.Methods We subjected two xerophytic species, Artemisia vestita (subshrub) and Bauhinia brachycarpa (shrub), to increasing RFC gradients (0%, 25%, 50% and 75%, v v-1) in an arid environment and measured fine-root traits related to resource foraging.Results Root hair density and mycorrhizal colonization of both species decreased with increasing root order, but increased in 3rd- and 4th-order roots at high RFCs (50% or 75%). The two species tend to produce more root hairs than mycorrhizas under the high RFCs. For both species, root hair density and mycorrhizal colonization intensity were negatively correlated with root length and root diameter. Rockiness reduced root branching intensity in both species comparing with rock-free soil. At the same level of RFC, A. vestita had thicker roots and lower branching intensity than B. brachycarpa, and tended to produce more root hairs.Conclusion Our results suggest the high RFC soil conditions stimulated greater foraging functions in higher root orders. We found evidence for a greater investment in root hairs and mycorrhizal symbioses as opposed to building an extensive root system in rocky soils. The subshrub and shrub species took different approaches to foraging in the rocky soil through distinctive trait syndromes of fine-root components.

2005 ◽  
Vol 21 (5) ◽  
pp. 529-540 ◽  
Author(s):  
Waldemar Zangaro ◽  
Fabio Rodrigo Nishidate ◽  
Flavia Regina Spago Camargo ◽  
Graziela Gorete Romagnoli ◽  
Julia Vandressen

The relationships between arbuscular mycorrhizal fungi and root morphological characteristics were studied under greenhouse conditions of 78 tropical native woody species and 47 seedling species collected in the field. Seedlings of native woody pioneer and early secondary species that generally exhibited fine roots with a dense cover of long root hairs showed higher mycorrhizal response and root mycorrhizal colonization than late-secondary and climax species with coarse roots with a sparse cover of short root hairs. Root-hair length and incidence decreased with the progression among the successional groups while fine-root diameter increased, both in the greenhouse and in the field. The mycorrhizal response was highly correlated to root mycorrhizal colonization in the greenhouse and in the field. These parameters were inversely correlated with the seed mass and fine-root diameter, but directly correlated with root-hair incidence, both in the greenhouse and in the field. Mycorrhizal response and root mycorrhizal colonization were also directly correlated with the root-hair length and root/shoot ratio of uninoculated plants. The seedling mycorrhizal status of the early successional woody species suggests that the root traits of these fast-growing species can be more receptive to attraction, infection and colonization by arbuscular mycorrhizas than root traits of late-successional species.


2014 ◽  
Vol 12 (1) ◽  
pp. 45-54 ◽  
Author(s):  
AHK Robin ◽  
MJ Uddin ◽  
S Afrin ◽  
PR Paul

The aims of this study were to investigate genotypic variations in root traits at phytomer level of wheat varieties and for recommending a few root traits as selection parameters in future breeding programs. Two separate experiments were conducted to measure their root traits for hydroponically grown wheat plants. In Experiment 1, main axis length, root hair density and diameter differed from phytomer to phytomer at 60 days after sowing for two varieties, Shotabdi and Sonalika. Density of first order laterals at their axis of origin, dry weights of roots and shoots and root:shoot ratio varied significantly among 8 varieties. In Experiment 2, number of root bearing phytomer, total number of adventitious roots, main axis length at root bearing phytomer 1 and 2 (youngest roots were the reference point and numbered as phytomer 1), length of first order laterals at phytomer 3, root hair density and dry weights of roots and shoots were significantly different among varieties. PC1 (principal component 1) resulted in significant variation among varieties for number of live leaves, new roots appeared, number of root bearing phytomer, total number of adventitious roots, root dry weight and shoot dry weight. PC2 yielded significant difference among varieties for live leaves, main axes length at phytomer 1 & 2, number of new roots, root hair density and diameter. Selection of varieties based on main axes length at the youngest phytomer & root hair density per unit surface area along with dry weights of roots and shoots could be recommended for future breeding program as these four parameters consistently resulted in significant variation among varieties. DOI: http://dx.doi.org/10.3329/jbau.v12i1.21238 J. Bangladesh Agril. Univ. 12(1): 45-54, June 2014


2001 ◽  
Author(s):  
Amram Eshel ◽  
Jonathan P. Lynch ◽  
Kathleen M. Brown

Specific Objectives and Related Results: 1) Determine the effect of phosphorus availability on ethylene production by roots. Test the hypothesis that phosphorus availability regulates ethylene production Clear differences were found between the two plants that were studied. In beans ethylene production is affected by P nutrition, tissue type, and stage of development. There are genotypic differences in the rate of ethylene production by various root types and in the differential in ethylene production when P treatments are compared. The acceleration in ethylene production with P deficiency increases with time. These findings support the hypothesis that ethylene production may be enhanced by phosphorus deficiency, and that the degree of enhancement varies with genotype. In tomatoes the low-P level did not enhance significantly ethylene production by the roots. Wildtype cultivars and ethylene insensitive mutants behaved similarly in that respect. 2) Characterize the effects of phosphorus availability and ethylene on the architecture of whole root systems. Test the hypothesis that both ethylene and low phosphorus availability modify root architecture. In common bean, the basal roots give rise to a major fraction of the whole root system. Unlike other laterals these roots respond to gravitropic stimulation. Their growth angle determines the proportion of the root length in the shallow layers of the soil. A correlation between ethylene production and basal root angle was found in shallow rooted but not deep-rooted genotypes, indicating that acceleration of ethylene synthesis may account for the change in basal root angle in genotypes demonstrating a plastic response to P availability. Short-time gravitropic response of the tap roots of young bean seedlings was not affected by P level in the nutrient solution. Low phosphorus specifically increases root hair length and root hair density in Arabidopsis. We tested 7 different mutants in ethylene perception and response and in each case, the response to low P was lower than that of the wild-type. The extent of reduction in P response varied among the mutants, but every mutant retained some responsiveness to changes in P concentration. The increase in root hair density was due to the increase in the number of trichoblast cell files under low P and was not mediated by ethylene. Low P did not increase the number of root hairs forming from atrichoblasts. This is in contrast to ethylene treatment, which increased the number of root hairs partly by causing root hairs to form on atrichoblasts. 3) Assess the adaptive value of root architectural plasticity in response to phosphorus availability. A simulation study indicated that genetic variation for root architecture in common bean may be related to adaptation to diverse competitive environments. The fractal dimension of tomato root system was directly correlated with P level.


1973 ◽  
Vol 53 (2) ◽  
pp. 169-175 ◽  
Author(s):  
J. B. BOLE

Chromosome substitution lines of wheat (Triticum aestivum L.) showing a parental difference in root-hair development were studied under several P regimes. Average root-hair density was 45 root hairs/mm in a low-P soil compared with 60 when P supply was adequate. Soil P uptake was not closely related to root-hair density in any of the regimes. Rape roots virtually devoid of root hairs took up two to six times as much soil P per unit length as the wheat roots with root hairs. Flax roots also did not produce root hairs but absorbed more P per unit length than the wheat roots. Root-hair development did not regulate the P uptake efficiency of the wheat roots and would be expected to be even less effective in supplying other nutrients.


2020 ◽  
Author(s):  
Dan-Dan Li ◽  
Hong-Wei Nan ◽  
Chun-Zhang Zhao ◽  
Chun-Ying Yin ◽  
Qing Liu

Abstract Aims Competition, temperature, and nutrient are the most important determinants of tree growth in the cold climate on the eastern Tibetan Plateau. Although many studies have reported their individual effects on tree growth, little is known about how the interactions of competition with fertilization and temperature affect root growth. We aim to test whether climate warming and fertilization promote competition and to explore the functional strategies of Picea asperata in response to the interactions of these factors. Methods We conducted a paired experiment including competition and non-competition treatments under elevated temperature (ET) and fertilization. We measured root traits, including the root tip number over the root surface (RTRS), the root branching events over the root surface (RBRS), the specific root length (SRL), the specific root area (SRA), the total fine root length and area (RL and RA), the root tips (RT) and root branching events (RB). These root traits are considered to be indicators of plant resource uptake capacity and root growth. The root biomass and the nutrient concentrations in the roots were also determined. Important Findings The results indicated that ET, fertilization and competition individually enhanced the nitrogen (N) and potassium (K) concentrations in fine roots, but they did not affect fine root biomass or root traits, including RL, RT, RA and RB. However, both temperature and fertilization, as well as their interaction, interacting with competition increased RL, RA, RT, RB, and nutrient uptake. In addition, the SRL, SRA, RTRS and RBRS decreased under fertilization, the interaction between temperature and competition decreased SRL and SRA, while the other parameters were not affected by temperature or competition. These results indicate that Picea asperata maintains a conservative nutrient strategy in response to competition, climate warming, fertilization, and their interactions. Our results improve our understanding of the physiological and ecological adaptability of trees to global change.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e75452 ◽  
Author(s):  
Natasha Savage ◽  
Thomas J. W. Yang ◽  
Chung Ying Chen ◽  
Kai-Lan Lin ◽  
Nicholas A. M. Monk ◽  
...  

2001 ◽  
Vol 24 (4) ◽  
pp. 459-467 ◽  
Author(s):  
Z. Ma ◽  
D. G. Bielenberg ◽  
K. M. Brown ◽  
J. P. Lynch

Sign in / Sign up

Export Citation Format

Share Document