ethylene production
Recently Published Documents


TOTAL DOCUMENTS

1794
(FIVE YEARS 191)

H-INDEX

66
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Mitsutoshi Okamoto ◽  
Tomoko Niki ◽  
Mirai Azuma ◽  
Kenichi Shibuya ◽  
Kazuo Ichimura

Abstract Delphinium flowers are highly sensitive to ethylene and its sepals abscise during senescence, which is associated with increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities and ethylene production in gynoecium and receptacle. Three ACS genes (DgACS1, DgACS2, and DgACS3) and three ACO genes (DgACO1, DgACO2, and DgACO3) were cloned from Delphinium grandiflorum cv. Super Grand Blue. To investigate the contribution of these genes to ethylene production, their expression was analyzed in these genes in the gynoecium and receptacle during natural senescence and following ethylene exposure and pollination. Ethylene production in the gynoecium and receptacle increased during natural flower senescence. The transcript levels of the ACS and ACO genes in these organs, excluding DgACS2 in the receptacle, increased during senescence. Exposure to ethylene accelerated sepal abscission and more strongly increased ethylene production in the receptacle than in the gynoecium. DgACS1 transcript levels in the gynoecium and DgACS2 and DgACO3 transcript levels in the receptacle were increased by ethylene exposure. Pollination accelerated sepal abscission and increased ethylene production in the gynoecium and receptacle. Pollination slightly affected ACS and ACO transcript levels in the gynoecium, whereas DgACO3 transcript level in the receptacle were markedly increased. These results reveal that ACS and ACO gene expression is differently regulated in the gynoecium and receptacle, and some of these genes are more strongly upregulated by ethylene exposure and pollination in the receptacle than in the gynoecium, suggesting the significance of the receptacle to sepal abscission.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2196
Author(s):  
Simoní Da Ros ◽  
Tahyná Barbalho Fontoura ◽  
Marcio Schwaab ◽  
Normando José Castro de Jesus ◽  
José Carlos Pinto

Ethylene production via oxidative coupling of methane (OCM) represents an interesting route for natural gas upscaling, being the focus of intensive research worldwide. Here, OCM developments are analysed in terms of kinetic mechanisms and respective applications in chemical reactor models, discussing current challenges and directions for further developments. Furthermore, some thermodynamic aspects of the OCM reactions are also revised, providing achievable olefins yields in a wide range of operational reaction conditions. Finally, OCM catalysts are reviewed in terms of respective catalytic performances and thermal stability, providing an executive summary for future studies on OCM economic feasibility.


2021 ◽  
pp. 2110026
Author(s):  
Yu Deng ◽  
Munkhbayar Batmunkh ◽  
Liqun Ye ◽  
Chenjie Song ◽  
Teng Ge ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Suheng Wang ◽  
Kelechi Uwakwe ◽  
Liang Yu ◽  
Jinyu Ye ◽  
Yuezhou Zhu ◽  
...  

AbstractRenewable energy-based electrocatalytic hydrogenation of acetylene to ethylene (E-HAE) under mild conditions is an attractive substitution to the conventional energy-intensive industrial process, but is challenging due to its low Faradaic efficiency caused by competitive hydrogen evolution reaction. Herein, we report a highly efficient and selective E-HAE process at room temperature and ambient pressure over the Cu catalyst. A high Faradaic efficiency of 83.2% for ethylene with a current density of 29 mA cm−2 is reached at −0.6 V vs. the reversible hydrogen electrode. In-situ spectroscopic characterizations combined with first-principles calculations reveal that electron transfer from the Cu surface to adsorbed acetylene induces preferential adsorption and hydrogenation of the acetylene over hydrogen formation, thus enabling a highly selective E-HAE process through the electron-coupled proton transfer mechanism. This work presents a feasible route for high-efficiency ethylene production from E-HAE.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2304
Author(s):  
Joan Casals ◽  
Aurora Rull ◽  
Jordi Giné-Bordonaba

The diversity preserved within the European long shelf life tomato landraces (LSL) is a unique source to design high quality tomato products better adapted to changing environmental conditions and, thereby, to reduce food losses. The adaptation of LSL to water deficit (WD) management practices and their postharvest keeping ability can be used as tools to concomitantly enhance fruit quality and sustainable production. In this study, we investigated the effect of WD conditions and the plant growing environment (open field vs. tunnel) on quality traits of two genotypes of the Penjar LSL variety (modern hybrid (MV) and landrace (LR)). Changes in ripening-related quality traits (fruit ethylene production, respiration rate, firmness, color, soluble solids content, titratable acidity and the content of antioxidants, as well as specific sugars and acids) in response to the different preharvest factors were evaluated at the time of harvest and after a short period of storage (30 days), following actual commercial practices. Significant differences among genotypes were encountered for most quality traits at the time of harvest and higher intra- and inter-environment heterogeneity was observed in the LR than in the MV genotype. In general, Penjar tomatoes exhibit a low physiological activity (ethylene production, 0.56–1.33 µL kg−1 h−1, respiration rate: 0.015–0.026 mg CO2 kg−1 h−1) at harvest. In both genotypes, WD increased to a different extent the fruit external color (redness, lightness) as well as the sensory (SSC) and nutritional (antioxidant capacity) fruit profiles. By contrast, the growing environment had little impact on most fruit quality traits. Postharvest storage only led to a slight reduction in the fruit respiration and ethylene production, lower sugars and acids content, enhanced color and no firmness changes. Overall, the results from this study demonstrate that selecting the appropriate genotypes is the most important step towards the design of high-quality LSL tomatoes, while WD and short-term storage can be used by farmers as a strategy to differentiate the product quality in specific market niches.


Author(s):  
Shane Lawson ◽  
Khaled Baamran ◽  
Kyle Newport ◽  
Fateme Rezaei ◽  
Ali Rownaghi

2021 ◽  
Vol 12 ◽  
Author(s):  
Aung Htay Naing ◽  
Hui Yeong Jeong ◽  
Sung Keun Jung ◽  
Chang Kil Kim

Abiotic stress induces the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in plants, which consequently enhances ethylene production and inhibits plant growth. The bacterial ACC deaminase enzyme encoded by the acdS gene reduces stress-induced ethylene production and improves plant growth in response to stress. In this study, overexpression of acdS in Petunia hybrida (‘Mirage Rose’) significantly reduced expression of the ethylene biosynthesis gene ACC oxidase 1 (ACO1) and ethylene production relative to those in wild type (WT) under various abiotic stresses (cold, drought, and salt). The higher reduction of stress-induced ethylene in the transgenic plants, which was due to the overexpression of acdS, led to a greater tolerance to the stresses compared to that in the WT plants. The greater stress tolerances were proven based on better plant growth and physiological performance, which were linked to stress tolerance. Moreover, expression analysis of the genes involved in stress tolerance also supported the increased tolerance of transgenics relative to that with the WT. These results suggest the possibility that acdS is overexpressed in ornamental plants, particularly in bedding plants normally growing outside the environment, to overcome the deleterious effect of ethylene on plant growth under different abiotic stresses. The development of stress-tolerant plants will be helpful to advance the floricultural industry.


2021 ◽  
Vol 22 (21) ◽  
pp. 11308
Author(s):  
Yan Wang ◽  
Li Deng ◽  
Junren Meng ◽  
Liang Niu ◽  
Lei Pan ◽  
...  

Stony hard (SH) peach (Prunus persica L. Batsch) fruit does not release ethylene and has very firm and crisp flesh at ripening, both on- and off-tree. Long-term cold storage can induce ethylene production and a serious risk of chilling injury in SH peach fruit; however, the regulatory mechanism underlying ethylene production in stony hard peach is relatively unclear. In this study, we analyzed the phytohormone levels, fruit firmness, transcriptome, and lipidome changes in SH peach ‘Zhongtao 9’ (CP9) during cold storage (4 °C). The expression level of the ethylene biosynthesis gene PpACS1 and the content of ethylene in SH peach fruit were found to be upregulated during cold storage. A peak in ABA release was observed before the release of ethylene and the genes involved in ABA biosynthesis and degradation, such as zeaxanthin epoxidase (ZEP) and 8’-hydroxylase (CYP707A) genes, were specifically induced in response to low temperatures. Fruit firmness decreased fairly slowly during the first 20 d of refrigeration, followed by a sharp decline. Furthermore, the expression level of genes encoding cell wall metabolic enzymes, such as polygalacturonase, pectin methylesterase, expansin, galactosidase, and β-galactosidase, were upregulated only upon refrigeration, as correlated with the decrease in fruit firmness. Lipids belonging to 23 sub-classes underwent differential rearrangement during cold storage, especially ceramide (Cer), monoglycosylceramide (CerG1), phosphatidic acid (PA), and diacyglyceride (DG), which may eventually lead to ethylene production. Exogenous PC treatment provoked a higher rate of ethylene production. We suspected that the abnormal metabolism of ABA and cell membrane lipids promotes the production of ethylene under low temperature conditions, causing the fruit to soften. In addition, ERF transcription factors also play an important role in regulating lipid, hormone, and cell wall metabolism during long-term cold storage. Overall, the results of this study give us a deeper understanding of the molecular mechanism of ethylene biosynthesis during the postharvest storage of SH peach fruit under low-temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document