phosphate deficiency
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 67)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Lokesh Verma ◽  
Rumi ◽  
Alok K. Sinha ◽  
Jitender Giri

Plant Science ◽  
2021 ◽  
Vol 312 ◽  
pp. 111060
Author(s):  
Caiwen Xue ◽  
Wenfeng Li ◽  
Renfang Shen ◽  
Ping Lan

2021 ◽  
Author(s):  
Houda Bey ◽  
Florent Charton ◽  
Helena Cruz de Carvalho ◽  
Shun Liu ◽  
Richard G Dorrell ◽  
...  

The dynamic movement of cell organelles is an important and poorly understood component of cellular organisation and metabolism. In this work we present a non-invasive non-destructive method (Dynamic Cell Imaging, DCI) based on light scattering and interferometry to monitor dynamic events within photosynthetic cells using the diatom Phaeodactylum tricornutum as a model system. For this monitoring we acquire few seconds movies of the signals that are related to the motion of dynamic structures within the cell (denoted scatterers), followed by a statistical analysis of each pixel time series. Illuminating P.tricornutum with LEDs of different wavelengths associated to short pulsed or continuous-wave modes of illumination revealed that dynamic movements depend on chloroplast activity, in agreement with the reduction in the number of pixels with dynamic behaviour after addition of photosystemII inhibitors. We studied P. tricornutum under two environmentally relevant stresses, iron and phosphate deficiency. The major dynamic sites were located within lipid droplets and chloroplast envelope membranes. By comparing standard deviation and cumulative sum analysis of the time series, we showed that within the droplets two types of scatterer movement could be observed: random motions (Brownian type) but also anomalous movements corresponding to a drift which may relate to molecular fluxes within a cell. The method appears valuable for studying the effects of various environments on a large variety of microalgae in the laboratory as well as in natural aquatic environments.


2021 ◽  
Vol 17 (1) ◽  
pp. 45
Author(s):  
Tasliah Tasliah

Rice is the staple food for more than half of the world's population. Rice production in 2050 must increase by at least 50% to keep up with the population growth. Efforts to increase rice production continue using various strategies. Breeders apply multiple approaches including application of molecular markers in developing varieties better than the previous ones. Since the discovery of the restriction fragment length polymorphism (RFLP) markers in 1980s and the development of polymerase chain reaction (PCR) method, many types of molecular markers have been developed and applied to various crops including rice. Various molecular approaches to map genetic loci associated with rice superior traits were conducted. The mapped loci are very useful for rice breeding purposes. This paper reports the results of mapping and breeding economically important traits in rice, mainly those related to abiotic stresses, agronomic traits, yield, and yield quality. These included characters of semidwarf stature, aromatic grain, high yield potential, eating quality, higher Zn and Fe grain, more tolerant to abiotic stresses, such as salinity, drought, phosphate deficiency, Al toxicity and Fe toxicity, submergence, as well as early maturity character. The mapped characters can be transferred using marker-assisted backcrossing (MABC) method into cultivated rice genotypes well-adopted by farmers. Several countries including Indonesia have benefited from this breeding method, and Indonesia have released several rice varieties developed through MABC. These include rice varieties such as Code, Angke, Inpari 30, Inpari Blas, Inpari HDB, Bio Patenggang Agritan, and Bioni 63 Ciherang Agritan


2021 ◽  
pp. 79-91
Author(s):  
O. D. Ostroumova ◽  
S. A. Bliznyuk ◽  
A. I. Kochetkov ◽  
A. G. Komarovа

Hypophosphatemia (GF) is defined as a decrease in the level of inorganic phosphorus in the blood serum below 2.5 mg/dl (0.81 mmol/L). One of the reasons for the development of GF can be the use of a number of medications: diuretics, some antibacterial drugs, insulin, antacids, glucose solutions for parenteral administration, antitumor drugs. The true prevalence of drug-induced (DI) HB is unknown, because the phosphate level is not evaluated routinely, but only when GF is suspected. The most common mechanism for the development of DI GF is an increase in the excretion of phosphates by the kidneys. In most cases, DI GF is asymptomatic and regresses after discontinuation of the inducer drug. To compensate for the phosphate deficiency, non-drug methods (diet) and pharmacotherapy are used. Prevention of DI GF involves avoiding the use of drugs, the reception of which is associated with the development of DI GF, especially in patients at risk of developing GF.


2021 ◽  
Vol 43 (2) ◽  
pp. 1142-1155
Author(s):  
Zhi Nie ◽  
Bowen Luo ◽  
Xiao Zhang ◽  
Ling Wu ◽  
Dan Liu ◽  
...  

A deficiency in the macronutrient phosphate (Pi) brings about various changes in plants at the morphological, physiological and molecular levels. However, the molecular mechanism for regulating Pi homeostasis in response to low-Pi remains poorly understood, particularly in maize (Zea mays L.), which is a staple crop and requires massive amounts of Pi. Therefore, in this study, we performed expression profiling of the shoots and roots of maize seedlings with Pi-tolerant genotype at both the transcriptomic and proteomic levels using RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ). We identified 1944 differentially expressed transcripts and 340 differentially expressed proteins under low-Pi conditions. Most of the differentially expressed genes were clustered as regulators, such as transcription factors involved in the Pi signaling pathway at the transcript level. However, the more functional and metabolism-related genes showed expression changes at the protein level. Moreover, under low-Pi conditions, Pi transporters and phosphatases were specifically induced in the roots at both the transcript and protein levels, and increased amounts of mRNA and protein of two purple acid phosphatases (PAPs) and one UDP-sulfoquinovose synthase (SQD) were specifically detected in the roots. The new insights provided by this study will help to improve the P-utilization efficiency of maize.


2021 ◽  
Vol 22 (17) ◽  
pp. 9275
Author(s):  
Nuo Shen ◽  
Sifan Hou ◽  
Guoqing Tu ◽  
Wenzhi Lan ◽  
Yanping Jing

The remodeling of root architecture is regarded as a major development to improve the plant’s adaptivity to phosphate (Pi)-deficient conditions. The WRKY transcription factors family has been reported to regulate the Pi-deficiency-induced systemic responses by affecting Pi absorption or transportation. Whether these transcription factors act as a regulator to mediate the Pi-deficiency-induced remodeling of root architecture, a typical local response, is still unclear. Here, we identified an Arabidopsis transcription factor, WRKY33, that acted as a negative regulator to mediate the Pi-deficiency-induced remodeling of root architecture. The disruption of WRKY33 in wrky33-2 mutant increased the plant’s low Pi sensitivity by further inhibiting the primary root growth and promoting the formation of root hair. Furthermore, we revealed that WRKY33 negatively regulated the remodeling of root architecture by controlling the transcriptional expression of ALMT1 under Pi-deficient conditions, which further mediated the Fe3+ accumulation in root tips to inhibit the root growth. In conclusion, this study demonstrates a previously unrecognized signaling crosstalk between WRKY33 and the ALMT1-mediated malate transport system to regulate the Pi deficiency responses.


Sign in / Sign up

Export Citation Format

Share Document