scholarly journals Hydrologic soil group based curve number matrix modeling for Enset-Based land use system in Meki River Watershed, Western Lake Ziway Sub-Basin, Central Rift Valley of Ethiopia

Author(s):  
Alemu Beyene Woldesenbet ◽  
Sebsebe Demisew Wudmatas ◽  
Mekuria Argaw Denboba ◽  
Azage Gebreyohannes Gebremariam

Abstract Background Enset-Based land use system (EBLUS) exhibits good carbon stock and infiltration rate equivalent to forest covered areas, which enhances infiltration and water holding capacity and it can reduce the curve number (CN) of the watersheds but it was not considered in former studies. Therefore, this study is planned to model the hydrologic soil group (HSG) based CN matrix of EBLUS relative to other LUSs with established hydrological characteristics in the Meki river watershed. The soil data is used to determine the HSG of the watershed collected from Ministry of Water, Irrigation and Energy (MOWIE) and verified by Harmonized World Soil Database (HWSD). A Model is developed for CN of EBLUS relative to other LUSs (Alemu’s formula). The model considers both infiltration rate measured using Amozi-meter and carbon stoke of soil weighed as 85% and 15% respectively. HEC-GEO-HMS model is used to consider the CN of EBLUS as a separate LUS to verify the developed CN matrix model to generate CN of the sub-watersheds. Result The field measurement results show that an infiltration rate of 12.9675,11.1875,10.375,7.065 and 12.8125mm hr -1 for Natural Forest, Grassland and plantation, cultivated, built-up and EBLUS respectively. The model is: and the resulting CN matrix of EBLUS is 39,51.5,58.3 and 61.6 for HSG of A,B,C and D respectively. Conclusion Significant reduction in mean CN of the watershed that shows the role of EBLUS in managing the water resources and flood is high. Therefore, escalating EBLUS will reduce the CN of the watershed which reduces runoff volume in the watershed and it ensures the sustainability of Lake Ziway by reducing sedimentation.

This research intends to accurately mapping the Curve Number (CN) that is as the function of cover type, land use treatment, hydrology condition, and hydrologic soil group in the Lesti sub-watershed,. The methodology consists of to build the suitable CN modeling for predicting discharge in the Lesti sub-watershed and then to evaluate the result accurately. The value of CN is obtained from the mathematical formula with the input is rainfall depth and discharge. The result of CN modeling for the Lesti sub-watershed is accurate enough as is made by the United States Department of Agriculture (USDA) in USA. In addition, the CN mapping can be directly used by the engineers of the manager and designer on the water resources structures in Lesti sub-watershed


2022 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Hanyong Lee ◽  
Min Suh Chae ◽  
Jong-Yoon Park ◽  
Kyoung Jae Lim ◽  
Youn Shik Park

Changes in rainfall pattern and land use have caused considerable impacts on the hydrological behavior of watersheds; a Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to simulate such variations. The L-THIA model defines curve number according to the land use and hydrological soil group before calculating the direct runoff based on the amount of rainfall, making it a convenient method of analysis. Recently, a method was proposed to estimate baseflow using this model, which may be used to estimate the overall streamflow. Given that this model considers the spatial distribution of land use and hydrological soil groups and must use rainfall data at multiple positions, it requires the usage of a geographical information system (GIS). Therefore, a model that estimates streamflow using land use maps, hydrologic soil group maps, and rain gauge station maps in QGIS, a popular GIS software, was developed. This model was tested in 15 watersheds.


2020 ◽  
Author(s):  
Alemu Beyene Woldesenbet ◽  
Sebsebe Demisew Wudmatas ◽  
Mekuria Argaw Denboba ◽  
Azage Gebreyohannes Gebremariam

Abstract Background Water erosion, upland degradation and deforestation are the key environmental problems in Meki river watershed where this study was conducted. This study assessed the land use land cover change (LULCC) over the last 30 years, examined the contribution of Enset-Based land use system (EBLUS) to manage soil erosion problem for sustainability of Lake Ziway and suggested appropriate management interventions for the watershed ERDAS imagine 2014, Geo-statistical interpolation and RUSLE model was devised for LULCC detection and analysis, for different spatial inputs and soil loss modeling respectively. Result Meki river watershed covers 2110.39056 km² of area which is dominantly covered by cultivated land use system (41.5%), Enset-Based land use system (EBLUS)(10.65%), Bush and Chat land use system (25.6%), Forest and plantations land use system (14.14%), built up (7.4%) and water bodies (0.75%). Severity class of High to severe range (18-125tha-1yr-1) recorded in the sub-watersheds irrespective of the land use systems and facing sever degradation problem that increase in soil loss in all land use systems from 1987 to 2017. The average soil loss of 30.5tha-1yr-1 and 31.905tha-1yr-1 recorded from Enset growing zones and non-Enset growing zones of the watershed respectively.Conclusion Enset-Based land use system (EBLUS) saves significant amount of soil despite the steepness of the slopes of the Enset growing zones of the watershed. Hence, expansion of EBLUS can contribute in sustaining Lake Ziway by reducing soil loss rate and sedimentation problem for ecological sustainability of the watershed. Therefore, separate land use policy and awareness creation are mandatory for such EBLUS expansion, integrated watershed management and conservation of the natural environment.


2020 ◽  
Author(s):  
Alemu Beyene Woldesenbet ◽  
Sebsebe Demisew Wudmatas ◽  
Mekuria Argaw Denboba ◽  
Azage Gebreyohannes Gebremariam

Abstract Background Water erosion, upland degradation and deforestation are key environmental problems in Meki river watershed. . The study assessed the land use land cover change (LULCC) over the last 30 years, examined the contribution of the indigenous Enset-Based land use system (EBLUS) which was not studied so far in reducing soil erosion and preventing Lake Ziway from sedimentation. Based on the outcomes, the research recommended appropriate management interventions based on priority mapped to sustainably manage the watershed. GPS based Ground truth data sampling and collection, Geo-statistical interpolation and RUSLE model were applied for soil erosion modeling. The LULCC detection and analysis was conducted to generate the spatial inputs using ERDAS Imagine 2014. Result Meki river watershed has 2110.4 km² of area which is dominantly covered by cultivated land use system (41.5%), Enset-Based land use system (EBLUS)(10.65%), Bush and Chat land use system (25.6%), Forest and plantations land use system (14.14%), built up (7.4%) and water bodies (0.75%). Severity class of High to severe range (18-125tha -1 yr -1 ) recorded in the sub-watersheds irrespective of the land use systems and facing sever degradation problem that increase in soil loss in all land use systems from 1987 to 2017. The average soil loss of 30.5tha -1 yr-1 and 31.905tha-1yr-1 verified from Enset growing zones and non-Enset growing zones of the watershed respectively. Conclusion Enset-Based land use system (EBLUS) saves significant amount of soil despite the steepness of the slopes of the Enset growing zones of the watershed. Hence, expansion of EBLUS can contribute in sustaining Lake Ziway by reducing soil loss rate and sedimentation problem for ecological sustainability of the watershed. Therefore, separate land use policy and awareness creation are mandatory for such EBLUS expansion, integrated watershed management and conservation of the natural environment in the watershed.


2020 ◽  
Author(s):  
Alemu Beyene Woldesenbet ◽  
Sebsebe Demisew Wudmatas ◽  
Mekuria Argaw Denboba ◽  
Azage Gebreyohannes Gebremariam

Abstract Background Water erosion, upland degradation and deforestation are key environmental problems in Meki river watershed. . The study assessed the land use land cover change (LULCC) over the last 30 years, examined the contribution of the indigenous Enset-Based land use system (EBLUS) which was not studied so far in reducing soil erosion and preventing Lake Ziway from sedimentation. Based on the outcomes, the research recommended appropriate management interventions based on priority mapped to sustainably manage the watershed. GPS based Ground truth data sampling and collection, Geo-statistical interpolation and RUSLE model were applied for soil erosion modeling. The LULCC detection and analysis was conducted to generate the spatial inputs using ERDAS Imagine 2014. Result Meki river watershed has 2110.4 km² of area which is dominantly covered by cultivated land use system (41.5%), Enset-Based land use system (EBLUS)(10.65%), Bush and Chat land use system (25.6%), Forest and plantations land use system (14.14%), built up (7.4%) and water bodies (0.75%). Severity class of High to severe range (18-125tha-1yr-1) recorded in the sub-watersheds irrespective of the land use systems and facing sever degradation problem that increase in soil loss in all land use systems from 1987 to 2017. The average soil loss of 30.5tha-1yr-1 and 31.905tha-1yr-1 verified from Enset growing zones and non-Enset growing zones of the watershed respectively.Conclusion Enset-Based land use system (EBLUS) saves significant amount of soil despite the steepness of the slopes of the Enset growing zones of the watershed. Hence, expansion of EBLUS can contribute in sustaining Lake Ziway by reducing soil loss rate and sedimentation problem for ecological sustainability of the watershed. Therefore, separate land use policy and awareness creation are mandatory for such EBLUS expansion, integrated watershed management and conservation of the natural environment in the watershed.


PERENNIAL ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 19
Author(s):  
Miranda R. Malamassam ◽  
Sandra E. Pakasi

Sub watershed of Latoma has to be considered as an area of the important regions in South East Sulawesi, because it takes a great responsibility as a water supplier in Konaweha watershed. Konaweha watershed is a source of irrigation and domestic water for Kolaka Regency, Konawe Regency, South Konawe Regency and Kendari Municipality which has been recently in a critical condition. For this reason, it should be well managed. This study was implemented with the aim of establishing model of land use in Latoma sub watershed that can preserve the land and water resources. The method employs a system analysis with simulation technique by using the Run-off Curve Number (CN) model based on Geographical Information Systems (GIS). The result of the research revealed that the run-off curve number is 70,34. It showed that maximum potential water retention or infiltration rate is 107,10 mm. Restructuring of land use pattern should be done to improve the condition of the area to achieve a sustainability objectives. Keywords : Watershed, land use, run-off curve number (CN), GIS


2020 ◽  
Author(s):  
Alemu Beyene Woldesenbet ◽  
Sebsebe Demisew Wudmatas ◽  
Mekuria Argaw Denboba ◽  
Azage Gebreyohannes Gebremariam

Abstract Background Water erosion, upland degradation and deforestation are key environmental problems in Meki river watershed. . The study assessed the land use land cover change (LULCC) over the last 30 years, examined the contribution of the indigenous Enset-Based land use system (EBLUS) which was not studied so far in reducing soil erosion and preventing Lake Ziway from sedimentation. Based on the outcomes, the research recommended appropriate management interventions based on priority mapped to sustainably manage the watershed. GPS based Ground truth data sampling and collection, Geo-statistical interpolation and RUSLE model were applied for soil erosion modeling. The LULCC detection and analysis was conducted to generate the spatial inputs using ERDAS Imagine 2014. Result Meki river watershed has 2110.4 km² of area which is dominantly covered by cultivated land use system (41.5%), Enset-Based land use system (EBLUS)(10.65%), Bush and Chat land use system (25.6%), Forest and plantations land use system (14.14%), built up (7.4%) and water bodies (0.75%). Severity class of High to severe range (18-125tha-1yr-1) recorded in the sub-watersheds irrespective of the land use systems and facing sever degradation problem that increase in soil loss in all land use systems from 1987 to 2017. The average soil loss of 30.5tha-1yr-1 and 31.905tha-1yr-1 verified from Enset growing zones and non-Enset growing zones of the watershed respectively.Conclusion Enset-Based land use system (EBLUS) saves significant amount of soil despite the steepness of the slopes of the Enset growing zones of the watershed. Hence, expansion of EBLUS can contribute in sustaining Lake Ziway by reducing soil loss rate and sedimentation problem for ecological sustainability of the watershed. Therefore, separate land use policy and awareness creation are mandatory for such EBLUS expansion, integrated watershed management and conservation of the natural environment in the watershed.


Sign in / Sign up

Export Citation Format

Share Document