soil group
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Hanyong Lee ◽  
Min Suh Chae ◽  
Jong-Yoon Park ◽  
Kyoung Jae Lim ◽  
Youn Shik Park

Changes in rainfall pattern and land use have caused considerable impacts on the hydrological behavior of watersheds; a Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to simulate such variations. The L-THIA model defines curve number according to the land use and hydrological soil group before calculating the direct runoff based on the amount of rainfall, making it a convenient method of analysis. Recently, a method was proposed to estimate baseflow using this model, which may be used to estimate the overall streamflow. Given that this model considers the spatial distribution of land use and hydrological soil groups and must use rainfall data at multiple positions, it requires the usage of a geographical information system (GIS). Therefore, a model that estimates streamflow using land use maps, hydrologic soil group maps, and rain gauge station maps in QGIS, a popular GIS software, was developed. This model was tested in 15 watersheds.


2021 ◽  
Vol 34 (2) ◽  
pp. 253-266
Author(s):  
Ali H. I. Al-Bayati ◽  
AbdulKarem A. M. Alalwany ◽  
Mohammed Abdal-Mnam Hassan

The study included the analysis of (341) samples from eight pedons cover most of the prevailing sub great soil groups in Iraq, which are (Typic Torrifluvents, Typic Torrients, Typic Gypsiorthids, Typic Calciorthids, Aquollic Salorthids, Typic Chromoxerects, Typic Xerrochrepts and Typic Calcixerects) to study the pedogenetic distribution of total and bioavailable content of the manganese, zinc, copper, and iron also its relationship with some soil properties. Results showed significant differences between the studied regions of total content of microelements, the bioavailability content also showed a significant deference between the studied regions. The physical and chemical soil properties clearly affected on their content of micronutrient and 77% of the studied samples were below the critical limit for zinc, but 65% of the studied samples were under the critical limit for iron. This refers to the response of the cultivated crops in such sub great soil groups to the addition of Zn and Fe fertilizers, also pedogenetic distribution of the content of these microelements showed a decrease with depth and compatible with the distribution of each of the separated clay and organic matter and decrease with the increase in the soil content of calcium carbonate.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 386-386
Author(s):  
Yongjie Wang ◽  
Tsung-Cheng Cheng Tsai ◽  
Shilei Zhang ◽  
Jiangchao Zhao ◽  
Yan Huang

Abstract The objective of this experiment was to investigate the influence of early exposure to topsoil on the muscle fiber characteristics and transcription-related myogenesis, intramuscular fat metabolism, muscle fiber types, and mTOR signaling pathway of weaned pigs. A Total of 180 piglets were separately assigned to the No soil, Antibacterial soil, and Normal soil group (each group, n = 60), and were fed ad libitum with common antibiotic-free corn-soybean meal diets until day-31. Ten pigs from each group with similar body weight were selected to be slaughtered, and the Longissimus dorsi (LD) muscle samples were collected for histological analysis and measurements of genes and protein expression levels. In the present study, the muscle fiber diameter and the area of the Normal soil and Antibacterial soil group were significantly higher than the No soil group (P < 0.05). The Normal soil significantly upregulated the gene expression of MyoG compared to No soil and Antibacterial soil groups (P < 0.05). The gene expression of CD36 and CPT-1 of the Normal soil group was significantly lower than the No soil group (P < 0.05), while HSL expression of the Normal soil group was significantly higher than the Antibacterial and No soil groups (P < 0.05). The MyHC I of the Normal soil group was significantly higher than the No soil group (P < 0.05), but the expression MyHC IIa was lower than the No soil group (P < 0.05). The protein expression expressed a similar result with gene expression. In addition, the Normal soil significantly increased the AMPK and mTOR phosphorylation compared to No soil and Antibacterial soil groups (P < 0.05). These data suggest that early exposure to topsoil regulates muscle fiber growth, modulates the expression pattern related to myogenesis, muscle fiber type, intramuscular fat metabolism, and increases the phosphorylation of mTOR and AMPK pathways.


2021 ◽  
Vol 14 (1) ◽  
pp. 73-86
Author(s):  
Asep Kurnia Hidayat ◽  
Pengki Irawan ◽  
Jaza'ul Ikhsan ◽  
Sri Atmadja ◽  
Novia Komala Sari

Abstrak. DAS Citanduy merupakan salah DAS yang terbesar di pulau Jawa dengan sungai utama adalah Cintanduy. DAS Citanduy terdiri dari beberapa sub DAS, salah satunya adalah sub DAS Citanduy Hulu. Perubahan tata guna lahan di DAS Citanduy Hulu terus terjadi, kondisi tsb telah mengakibatkan peningkatan debit banjir di sungai. Peningkatan debit di sungai diakibatkan adanya limpasan permukaan akibat hujan. limpasan permukaan dapat dianalisis menggunakan metode SCS (Soil Conservation Service). Metode SCS juga dianalisis berdasarkan kondisi tanah, sehingga dapat menentukan nilai Curve Number (CN) dari lahan. Hasil analisis tahun 2018, menunjukkan bahwa tutupan lahan 18,99% atau 13.735,97 ha berupa hutan (hutan primer, sekunder dan hutan tanaman). Sebaran jenis tanah di umumnya adalah Typic Dystrudepts (36,57%) dan Typic Hapludands (37,93%). Hydrological Soil Group (HSG) di DAS Citanduy Hulu didominasi oleh klas B sebesar 76, 92 %. Hasil analisis didapatkan bahwa DAS Citanduy Hulu tebal runoff maksimum pada PUH 2, 5, 10, 25, dan 50 tahun secara berurutan adalah 104 mm, 133 mm, 147 mm, 171 mm dan 187 mm. Tebal limpasan permukaan minimum dengan PUH 2, 5, 10, 25 dan 50 tahun secara berurutan adalah 17 mm, 31 mm, 39 mm, 53 mm dan 64 mm. Tebal limpasan permukaan menunjukkan potensi peningkatan debit banjir.Analysis And Mapping Runoff In Watershed Upper Citanduy With SCSN MethodAbstract. Citanduy watershed is one of the largest watersheds on the island of Java with the main river being Cintanduy. The Citanduy watershed consists of several sub-watersheds, one of which is the Upper Citanduy sub-watershed. Changes in land use in the Upper Citanduy watershed continue to occur, this condition has resulted in an increase in flood discharge in the river. The increase in discharge in the river is caused by surface runoff due to rain. Surface runoff can be analyzed using the SCS (Soil Conservation Service) method. The SCS method is also analyzed based on soil conditions so that it can determine the Curve Number (CN) value of the land. The results of the 2018 analysis show that 18.99% or 13,735.97 ha of land cover is forest (primary, secondary and plantation forests). The distribution of soil types, in general, is Typic Dystrudepts (36.57%) and Typic Hapludands (37.93%). Hydrological Soil Group (HSG) in the Upper Citanduy watershed is dominated by class B by 76.92%. The results of the analysis showed that the maximum runoff thickness of the Upper Citanduy Watershed at PUH 2, 5, 10, 25, and 50 years respectively was 104 mm, 133 mm, 147 mm, 171 mm, and 187 mm. The minimum surface runoff thickness with PUH 2, 5, 10, 25, and 50 years respectively is 17 mm, 31 mm, 39 mm, 53 mm, and 64 mm. The thickness of the surface runoff indicates the potential for increased flood discharge.


2021 ◽  
Author(s):  
Yongjie Wang ◽  
Tsung Cheng Tsai ◽  
Palika Morse ◽  
Shilei Zhang ◽  
Charles Maxwell ◽  
...  

Abstract The objective of this experiment was to investigate the influence of early exposure to topsoil on the muscle fiber characteristics and transcription related myogenesis, intramuscular fat metabolism, muscle fiber types, and mTOR signaling pathway of weaned pigs. A Total of 180 piglets were separately assigned to No soil, Antibacterial soil, and Normal soil group (each group, n=60), and were fed ad libitum with common antibiotic-free corn-soybean meal diets until day-31. Ten pigs from each group with similar body weight were selected to be slaughtered, and the longissimus dorsi (LD) muscle samples were collected for histological analysis and measurements of genes and proteins expression levels. In the present study, the muscle fiber diameter and the area of Normal soil and Antibacterial soil group were significantly higher than No soil group (P < 0.05). The Normal soil significantly upregulated the gene expression of MyoG compared to No soil and Antibacterial soil groups (P < 0.05). The gene expression of CD36 and CPT-1 of Normal soil group was significantly lower than No soil group (P < 0.05), while HSL expression of Normal soil group was significantly higher than Antibacterial and No soil groups (P < 0.05). The MyHC I of Normal soil group was significantly higher than No soil group (P < 0.05), but the expression MyHC IIa was lower than No soil group (P < 0.05). The protein expression expressed the similar result with gene expression. In addition, the Normal soil significantly increased the AMPK and mTOR phosphorylation compared to No soil and Antibacterial soil groups (P < 0.05). These data suggest that early exposure to topsoil regulates the muscle fiber growth, modulates the expression pattern related to myogenesis, muscle fiber type, intramuscular fat metabolism, and increases the phosphorylation of mTOR and AMPK pathways.


2021 ◽  
Author(s):  
Yongjie Wang ◽  
Tsung Cheng Tsai ◽  
Palika Morse ◽  
Shilei Zhang ◽  
Charles Maxwell ◽  
...  

Abstract Background: The objective of this experiment was to investigate the influence of early exposure to topsoil on the muscle fiber characteristics and transcription related myogenesis, intramuscular fat metabolism, muscle fiber types, and mTOR signaling pathway of weaned pigs.Methods: A Total of 180 piglets were separately assigned to No soil, Antibacterial soil, and Normal soil group (each group, n=60), and were fed ad libitum with common antibiotic-free corn-soybean meal diets until day-31. Ten pigs from each group with similar body weight were selected to be slaughtered, and the longissimus dorsi (LD) muscle samples were collected for histological analysis and measurements of genes and proteins expression levels.Result: In the present study, the muscle fiber diameter and the area of Normal soil and Antibacterial soil group were significantly higher than No soil group (P < 0.05). The Normal soil significantly upregulated the gene expression of MyoG compared to No soil and Antibacterial soil groups (P < 0.05). The gene expression of CD36 and CPT-1 of Normal soil group was significantly lower than No soil group (P < 0.05), while HSL expression of Normal soil group was significantly higher than Antibacterial and No soil groups (P < 0.05). The MyHC I of Normal soil group was significantly higher than No soil group (P < 0.05), but the expression MyHC IIa was lower than No soil group (P < 0.05). The protein expression expressed the similar result with gene expression. In addition, the Normal soil significantly increased the AMPK and mTOR phosphorylation compared to No soil and Antibacterial soil groups (P < 0.05).Conclusion: These data suggest that early exposure to topsoil regulates the muscle fiber growth, modulates the expression pattern related to myogenesis, muscle fiber type, intramuscular fat metabolism, and increases the phosphorylation of mTOR and AMPK pathways.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 534
Author(s):  
Pavel Samec ◽  
Jiří Volánek ◽  
Miloš Kučera ◽  
Pavel Cudlín

Plant distribution is most closely associated with the abiotic environment. The abiotic environment affects plant species’ abundancy unevenly. The asymmetry is further deviated by human interventions. Contrarily, soil properties preserve environmental influences from the anthropogenic perturbations. The study examined the supra-regional similarities of soil effects on plant species’ abundance in temperate forests to determine: (i) spatial relationships between soil property and forest-plant diversity among geographical regions; (ii) whether the spatial dependencies among compared forest-diversity components are influenced by natural forest representation. The spatial dependence was assessed using geographically weighted regression (GWR) of soil properties and plant species abundance from forest stands among 91 biogeographical regions in the Czech Republic (Central Europe). Regional soil properties and plant species abundance were acquired from 7550 national forest inventory plots positioned in a 4 × 4 km grid. The effect of natural forests was assessed using linear regression between the sums of squared GWR residues and protected forest distribution in the regions. Total diversity of forest plants is significantly dependent on soil-group representation. The soil-group effect is more significant than that of bedrock bodies, most of all in biogeographical regions with protected forest representation >50%. Effects of soil chemical properties were not affected by protected forest distribution. Spatial dependency analysis separated biogeographical regions of optimal forest plant diversity from those where inadequate forest-ecosystem diversity should be increased alongside soil diversity.


2021 ◽  
Vol 40 (1) ◽  
pp. 25-36
Author(s):  
Pavel Samec ◽  
Jiří Volánek ◽  
Aleš Bajer

Abstract Natural pine site differentiation is instrumental in the modification of Scots pine cultivation to environmental change. The aim of this study was to distinguish azonal pine sites in prevailing beechwood conditions by the means of soil property interrelationships. The study aimed at verifying assumptions (i) that intrinsic soil properties suggest differences at naturalness among various communities in the same mesoclimate, relief or on same soil group and (ii) whether pines differ from beechwoods uniformly or unevenly among different regional population areas. The verification was carried out by discrimination analysis of the H- and A-horizon forest soil properties at selected pine and beech stands in the Czech Republic between 2006 and 2015. Homogeneous pines were confirmed either on poorly developed or very infertile soils. Mixed pines were found on Cambisols. Complete separability was found between pines and beechwoods on Podzols due to inverse proportions of correlations among acid phosphomonoesterase (APMEA) and urease (UA) activities, Corg, Cmic, base saturation, bulk density and aeration. The inverse proportions among UA, Ntot, Cmic and soil hydrophysical properties conditioned the separability of pines on different soil groups than beechwoods. Soil indications of natural pines are related to phosphorus release by APMEA and site resistance to drought due to soil organic matter and water-holding capacity.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 101
Author(s):  
Haddish Melakeberhan ◽  
ZinThuZar Maung ◽  
Isaac Lartey ◽  
Senol Yildiz ◽  
Jenni Gronseth ◽  
...  

Determining if the vast soil health degradations across the seven major soil groups (orders) of Sub-Saharan Africa (SSA) can be managed on the basis of a one-size-fits-all or location-specific approach is limited by a lack of soil group-based understanding of soil health degradations. We used the relationship between changes in nematode population dynamics relative to food and reproduction (enrichment, EI) and resistance to disturbance (structure, SI) indices to characterize the soil food web (SFW) and soil health conditions of Ferralsol, Lithosol and Nitosol soil groups in Ghana, Kenya and Malawi. We applied bivariate correlations of EI, SI, soil pH, soil organic carbon (SOC), and texture (sand, silt and clay) to identify integrated indicator parameters, and principal component analysis (PCA) to determine how all measured parameters, soil groups, and countries align. A total of 512 georeferenced soil samples from disturbed (agricultural) and undisturbed (natural vegetation) landscapes were analyzed. Nematode trophic group abundance was low and varied by soil group, landscape and country. The resource-limited and degraded SFW conditions separated by soil groups and by country. EI and SI correlation with SOC varied by landscape, soil group or country. PCA alignment showed separation of soil groups within and across countries. The study developed the first biophysicochemical proof-of-concept that the soil groups need to be treated separately when formulating scalable soil health management strategies in SSA.


2021 ◽  
Author(s):  
Alemu Beyene Woldesenbet ◽  
Sebsebe Demisew Wudmatas ◽  
Mekuria Argaw Denboba ◽  
Azage Gebreyohannes Gebremariam

Abstract Background Enset-Based land use system (EBLUS) exhibits good carbon stock and infiltration rate equivalent to forest covered areas, which enhances infiltration and water holding capacity and it can reduce the curve number (CN) of the watersheds but it was not considered in former studies. Therefore, this study is planned to model the hydrologic soil group (HSG) based CN matrix of EBLUS relative to other LUSs with established hydrological characteristics in the Meki river watershed. The soil data is used to determine the HSG of the watershed collected from Ministry of Water, Irrigation and Energy (MOWIE) and verified by Harmonized World Soil Database (HWSD). A Model is developed for CN of EBLUS relative to other LUSs (Alemu’s formula). The model considers both infiltration rate measured using Amozi-meter and carbon stoke of soil weighed as 85% and 15% respectively. HEC-GEO-HMS model is used to consider the CN of EBLUS as a separate LUS to verify the developed CN matrix model to generate CN of the sub-watersheds. Result The field measurement results show that an infiltration rate of 12.9675,11.1875,10.375,7.065 and 12.8125mm hr -1 for Natural Forest, Grassland and plantation, cultivated, built-up and EBLUS respectively. The model is: and the resulting CN matrix of EBLUS is 39,51.5,58.3 and 61.6 for HSG of A,B,C and D respectively. Conclusion Significant reduction in mean CN of the watershed that shows the role of EBLUS in managing the water resources and flood is high. Therefore, escalating EBLUS will reduce the CN of the watershed which reduces runoff volume in the watershed and it ensures the sustainability of Lake Ziway by reducing sedimentation.


Sign in / Sign up

Export Citation Format

Share Document