scholarly journals A solution to the challenges of particle erosion and thermal cycle for PS-PVD 7YSZ thermal barrier coatings

Author(s):  
Xiaofeng Zhang ◽  
Ming Li ◽  
Yan Zhang ◽  
Ziqian Deng ◽  
Jiafeng Fan ◽  
...  

Abstract Advanced aero-engine is a key technique that is used all over the world, where many high-temperature components such as turbine blades and combustor, are made of Ni/Co/Fe based superalloys. However, they need high-temperature protection to avoid fast performance degradation. Generally, the superalloy high-temperature components are protected by thermal barrier coatings (TBCs) obtained via an atmospheric plasma spray (APS) and an electron beam-physical vapor deposition (EB-PVD). Here, a novel 3rd generation TBCs process using plasma spray-physical vapor deposition (PS-PVD) is presented, showing a more promising use than the traditional APS and EB-PVD. The PS-PVD feature uses evaporating ceramic powder, which results in the deposition of a feather-like columnar coating. This special microstructure showed good strain tolerance and non-line-of-sight (NLOS) deposition, giving great potential for application. In a working aero-engine, the high-temperature components face a serious environment, where foreign particle erosion is a great challenge and is the first barrier to the application of PS-PVD TBCs. As a solution, an Al-modification approach was proposed in this investigation. The results demonstrate that this approach can improve particle erosion resistance. Also, the thermal cycle performance had an apparent optimization.

2006 ◽  
Vol 522-523 ◽  
pp. 267-276 ◽  
Author(s):  
Kunihiko Wada ◽  
Yutaka Ishiwata ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Several kinds of thermal barrier coatings (TBCs) deposited by electron beam physical vapor deposition (EB-PVD) were produced as a function of electron beam power in order to evaluate their strain tolerance. The deposition temperatures were changed from 1210 K to 1303 K depending on EB power. In order to evaluate strain tolerances of the EB-PVD/TBCs, a uniaxial compressive spallation test was newly proposed in this study. In addition, the microstructures of the layers were observed with SEM and Young’s moduli were measured by a nanoindentation test. The strain tolerance in as-deposited samples decreased with an increase in deposition temperature. In the sample deposited at 1210 and 1268 K, high-temperature aging treatment at 1273 K for 10 h remarkably promoted the reduction of the strain tolerance. The growth of thermally grown oxide (TGO) layer generated at the interface between topcoat and bondcoat layers was the principal reason for this strain tolerance reduction. We observed TGO-layer growth even in the as-deposited sample. Although the thickness of the initial TGO layer in the sample deposited at high temperature was thicker, the growth rate during aging treatment was smaller than those of the other specimens. This result suggests that we can improve the oxidation resistance of TBC systems by controlling the processing parameters in the EB-PVD process.


Rare Metals ◽  
2020 ◽  
Vol 39 (5) ◽  
pp. 479-497 ◽  
Author(s):  
Mei-Jun Liu ◽  
Gao Zhang ◽  
Yan-Hong Lu ◽  
Jia-Qi Han ◽  
Guang-Rong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document