rotation speed
Recently Published Documents


TOTAL DOCUMENTS

1586
(FIVE YEARS 538)

H-INDEX

36
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Jinfeng Zhang ◽  
Yilei Zhu ◽  
Yalin Li ◽  
Ping Huang ◽  
Hui Xu ◽  
...  

Through numerical simulations, this work analyzes the unsteady pressure pulsation characteristics in new type of dishwasher pump with double tongue volute and single tongue volute, under volute static and rotation conditions. Likewise, the performance tests were also carried out to verify the numerical results. Multiple monitoring points were set at the various positions of new type dishwasher pump to collect the pressure pulsation signals, and the relevant frequency signals were obtained via Fast Fourier Transform, to analyze the influence of volute tongue and its passive speed on the pump performance. The results reveal that when the double tongue volute is stationary, the pressure pulsation amplitudes increase from the impeller inlet to the impeller outlet. Under the influence of shedding vortex, the pressure pulsation in the lateral region of tongue becomes disorganized, and the main frequency of pressure pulsation changes from blade frequency to shaft frequency. In addition, compared with the static volute, double tongue volute can effectively guide the water flow out of the tongue during the rotation process, thus ensuring good periodicity for pressure pulsation in the tongue region. Accordingly, a volute reference scheme with passive rotation speed is proposed in this study, which can effectively improve the pressure pulsation at tongue position, and provides a new idea for rotor-stator interference to guide the innovation of dishwasher.


2022 ◽  
Vol 12 (2) ◽  
pp. 618
Author(s):  
Haoyang Cao ◽  
Xun Chen ◽  
Haolin Li ◽  
Chao Shen

Cylindrical surface grinding can create defined textural patterns on a component with high quantity. This paper presents an experimental investigation of the frictional behaviours of ground cylindrical microstructural surfaces under a well lubrication condition. It shows that the coefficient of friction (COF) of microstructural surface is influenced by different workload and rotation speed. The results reveal that conventional surface roughness parameters do not present the influence of surface microstructure on friction performance well. However, the paper presents an interesting discovery that the friction behaviour of microstructural surfaces created by grinding could be controlled by combining dressing and grinding conditions. Such a discovery provides a logic way to reduce surface friction for energy efficiency applications. A few functional relationships have been established to illustrate the influence of microstructural features on friction. It was found that the ground microstructural surface could improve friction performance up to 20% compared to the smoother surfaces without defined surface textural patterns.


2022 ◽  
pp. 1-32
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross-section, converges in both transverse and longitudinal directions, and is also skewed β=120° with respect to the direction of rotation in order to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into eighteen isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full height configuration and two partial fin height arrangements (Sz=2mm and 1mm). In all cases, the strip fins are 2mm wide (W) and 10mm long (Lf ) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence, the spanwise spacing, Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300rpm. It is found that


2022 ◽  
Vol 12 (1) ◽  
pp. 478
Author(s):  
Guotao Huo ◽  
Zhonghai Ma ◽  
Yeqing Huang ◽  
Songlin Nie ◽  
Zhenhua Zhang

Under the requirement of clean production, a new type of slurry blast device for mechanically removing oxide scale on the surface of steel strips is presented, which can avoid the serious problems of rapid wear, low service life, and low efficiency of the traditional abrasive water jet with a nozzle. In this paper, the numerical simulation of the rotating blade centrifugal jet in the slurry blast device is conducted based on CFD, where the DPM and the erosion model are innovatively employed to simulate the movement characteristics of abrasive particles and the erosion rate of mixed slurry on the surface of the steel strip. Simulation results show that the erosion rate and particle motion velocity are proportional to the blade rotation speed and inlet pressure. Reasonable inlet pressure and rotation speed are helpful for improving the rust removal efficiency of slurry blast devices. An experimental system is established to validate the simulation results. The experimental results are consistent with the simulation trend, which exhibits that the developed slurry blast device is feasible for steel strip descaling. This work will play substantial guiding roles in the engineering optimization of slurry blast devices for steel strip descaling.


2022 ◽  
Vol 8 ◽  
Author(s):  
Zenglou Li ◽  
Chong Li ◽  
Shuohan Li ◽  
Demeng Yin ◽  
Zhenguo Qi ◽  
...  

Due to the inherent issue of requiring rigid back support, friction stir welding (FSW) has serious limitations for the welding of hollow structures. Self-supporting friction stir welding was proposed to join hollow aluminum extrusions, which could reduce the hindrance of the welding tool and the requirement of rigid back support. In this paper, finite element modeling analyses were carried out for the asymmetric temperature field in the process of self-supporting FSW. The peak temperature of the stir zone appeared in the upper shoulder affected zone, followed by the lower shoulder affected zone. In the upper shoulder affected zone, a peak temperature was not shown at the center of the curve due to the positive correlation between heat generation and radius and different heat dissipation rates. Considering the influence of thermal input and rotation speed on joint formation, 200 mm/min travel speed and 800 rpm rotation speed are the most proper parameters for 5-mm-thick 6082-T6 aluminum alloy self-supporting FSW butt welds.


2022 ◽  
pp. 117105
Author(s):  
Yong Zeng ◽  
Biqi Mao ◽  
Anqi Li ◽  
Yanlong Han ◽  
Fuguo Jia

2022 ◽  
Vol 355 ◽  
pp. 02011
Author(s):  
Mengyuan Yang ◽  
Jingfu Wang

In the process of centrifugal dry granulation of blast furnace slag, the thickness of the liquid film at the outlet of the rotor will have a significant impact on the degree of crushing of the slag after leaving the rotor and the size of the solid particles formed. Therefore, this paper uses the VOF method to analyse the flow of molten slag inside the cup. The results have shown that the slag flow has a significant effect on the thickness of the liquid film and the linear relationship is obvious; the thickness of the liquid film decreases with the increase of the diameter of the rotary cup and the rotation speed, and the negative correlation with the diameter of the cup is more obvious; Secondly, as the depth of the cup increases, the thickness of the liquid film decreases first and then increases. The inclination angle of the cup wall has little effect on the thickness of the liquid film.


2022 ◽  
Vol 42 ◽  
pp. 03009
Author(s):  
Vasiliy L. Andreev ◽  
Vladimir V. Shilin ◽  
Valeriy V. Ilichev ◽  
Tatjana S. Holodenina

The pneumatic system with a vertical annular aspiration channel for vibration-centered grain separators been developed. The rational values of the disk grain distributor are the length of the sectors 0.15 m, the angle of inclination of the sectors 60°. The rotation speed of the distributor in the seed mode (grain supply 5…15 t/h) should be 100…200 min-1 and in the food mode (grain supply 15…25 t/h) must be 100…150 min-1. The effect of the release of light impurities in the developed aspiration system decreases from 45% to 20% with an increase in the supply of grain G from 5 to 25 t/h, herewith at the same time the loss of a full-fledged grain to waste decreases from 0.6...0.8% to 0.3...0.4%, while the effect of the release of light impurities in the aspiration system of the mass-produced vibration centrifugal grain separator decreases from 11% to 4% with the same losses of grain to waste.


2022 ◽  
Vol 960 (1) ◽  
pp. 012013
Author(s):  
A Danlos ◽  
P Podevin ◽  
M Deligant ◽  
A Clenci ◽  
P Punov ◽  
...  

Abstract Surge is an unstable phenomenon appearing when a valve closing reduces the compressor flow rate. This phenomenon is avoided for automotive turbochargers by defining a surge margin during powertrain system design. This surge margin established with measurements in steady state testing regime limits the maximal engine torque at low levels of output. An active control of the compressor could reduce the surge margin and facilitate a transient compressor operation for a short time in surge zone. In this paper, an experimental study of the transient operation of a turbocharger compressor entering the surge zone is performed. Control of the turbocharger speed is sought to avoid unsteady operation using the variable geometry turbine (VGT) nozzle actuator. From a given stable operating point, surge is induced by reducing the opening of a valve located downstream of the compressor air circuit. The effect of reducing the speed of rotation by controlling the VGT valve is investigated, as this should lead to more stable compressor operation. The rotation speed of the turbocharger is controlled to avoid an unstable operating point using servo-actuator of variable geometry turbine. From a stable operating point, the surge appearance is caused by closing a butterfly valve downstream the air circuit of the compressor. The effect on the compressor rotation speed when the opening of variable geometry turbocharger valve is modified is studied. Measurements have been conducted for different control profiles of the VGT valve placed downstream the compressor. This article presents the means used to carry out these tests as well as the results of the measurements of the instantaneous signals of pressure, temperature, flow rate and rotation speed, allowing the analysis of the surge phenomenon.


Sign in / Sign up

Export Citation Format

Share Document