scholarly journals Physical mapping of repetitive oligonucleotides facilitates the establishment of a genome map-based karyotype to identify chromosomal variations in peanut

2020 ◽  
Author(s):  
Liuyang Fu ◽  
Qian Wang ◽  
Lina Li ◽  
Tao Lang ◽  
Junjia Guo ◽  
...  

Abstract Background: Chromosomal variants play important roles in crop breeding and genetic research. The development of single-stranded oligonucleotide (oligo) probes simplifies the process of fluorescence in situ hybridization (FISH) and facilitates chromosomal identification in many species. Genome sequencing provides rich resources for the development of oligo probes. However, little progress has been made in peanut. Thus, the identification of chromosomal variants in peanut remains a challenge, owing to a lack of efficient chromosomal markers. Results: A total 114 new oligo probes were developed, based on the genome-wide tandem repeats (TRs) identified from the reference sequences of the peanut variety Tifrunner (AABB, 2n = 4x = 40) and the diploid species Arachis ipaensis (BB, 2n = 2x = 20). These oligos were classified into 28 types, based on their positions, and overlapping signals in chromosomes. For each oligo types, a single and representative oligos was selected and modified with 6-carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA). Based on these 28 probes, a new multiplex #3 cocktail was developed with FAM-modified TIF-439, TIF-185-1, TIF-134-3, and TIF-165-3, and TAMRA-modified Ipa-1162, Ipa-1137, DP-1, and DP-5. This cocktail enabled the establishment of a genome map-based karyotype after sequential FISH/genomic in situ hybridization (GISH) and in silico mapping. Furthermore, we identified 14 chromosomal variants of peanut induced by radiation. A total of 28 representative probes were further chromosomally mapped onto the new karyotype. Among the probes, eight were mapped in the secondary constrictions, and intercalary and terminal regions; four were B genome-specific; one was chromosome-specific; and the other 15 were extensively mapped in the pericentric regions of chromosomes. Conclusions: The development of new oligo probes provides effective tools, which can be used to distinguish various chromosomes of peanut. Physical mapping reveals the genomic organization of repetitive oligos in peanut chromosomes by FISH. Following comparisons with their positions in the reference sequences, a genome map-based karyotype was established and used for the identification of chromosome variations in peanut.

2021 ◽  
Author(s):  
Liuyang Fu ◽  
Qian Wang ◽  
Lina Li ◽  
Tao Lang ◽  
Junjia Guo ◽  
...  

Abstract Background: Chromosomal variants play important roles in crop breeding and genetic research. The development of single-stranded oligonucleotide (oligo) probes simplifies the process of fluorescence in situ hybridization (FISH) and facilitates chromosomal identification in many species. Genome sequencing provides rich resources for the development of oligo probes. However, little progress has been made in peanut due to the lack of efficient chromosomal markers. Until now, the identification of chromosomal variants in peanut has remained a challenge.Results: A total of 114 new oligo probes were developed based on the genome-wide tandem repeats (TRs) identified from the reference sequences of the peanut variety Tifrunner (AABB, 2n = 4x = 40) and the diploid species Arachis ipaensis (BB, 2n = 2x = 20). These oligos were classified into 28 types based on their positions and overlapping signals in chromosomes. For each type, a representative oligo was selected and modified with green fluorescein 6-carboxyfluorescein (FAM) or red fluorescein 6-carboxytetramethylrhodamine (TAMRA). Two cocktails, Multiplex #3 and Multiplex #4, were developed by pooling the fluorophore conjugated probes. Multiplex #3 included FAM-modified oligo TIF-439, oligo TIF-185-1, oligo TIF-134-3, and oligo TIF-165. Multiplex #4 included TAMRA-modified oligo Ipa-1162, oligo Ipa-1137, oligo DP-1, and oligo DP-5. Each cocktail enabled the establishment of a genome map-based karyotype after sequential FISH/genomic in situ hybridization (GISH) and in silico mapping. Furthermore, we identified 14 chromosomal variants of peanut induced by radiation exposure. A total of 28 representative probes were further chromosomally mapped onto the new karyotype. Among the probes, eight were mapped in the secondary constrictions, intercalary, and terminal regions; four were B genome-specific; one was chromosome-specific; and the remaining 15 were extensively mapped in the pericentric regions of chromosomes.Conclusions: The development of new oligo probes provides an effective set of tools which can be used to distinguish the various chromosomes of the peanut. Physical mapping by FISH reveals the genomic organization of repetitive oligos in peanut chromosomes. A genome map-based karyotype was established and used for the identification of chromosome variations in peanut following comparisons with their reference sequence positions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liuyang Fu ◽  
Qian Wang ◽  
Lina Li ◽  
Tao Lang ◽  
Junjia Guo ◽  
...  

Abstract Background Chromosomal variants play important roles in crop breeding and genetic research. The development of single-stranded oligonucleotide (oligo) probes simplifies the process of fluorescence in situ hybridization (FISH) and facilitates chromosomal identification in many species. Genome sequencing provides rich resources for the development of oligo probes. However, little progress has been made in peanut due to the lack of efficient chromosomal markers. Until now, the identification of chromosomal variants in peanut has remained a challenge. Results A total of 114 new oligo probes were developed based on the genome-wide tandem repeats (TRs) identified from the reference sequences of the peanut variety Tifrunner (AABB, 2n = 4x = 40) and the diploid species Arachis ipaensis (BB, 2n = 2x = 20). These oligo probes were classified into 28 types based on their positions and overlapping signals in chromosomes. For each type, a representative oligo was selected and modified with green fluorescein 6-carboxyfluorescein (FAM) or red fluorescein 6-carboxytetramethylrhodamine (TAMRA). Two cocktails, Multiplex #3 and Multiplex #4, were developed by pooling the fluorophore conjugated probes. Multiplex #3 included FAM-modified oligo TIF-439, oligo TIF-185-1, oligo TIF-134-3 and oligo TIF-165. Multiplex #4 included TAMRA-modified oligo Ipa-1162, oligo Ipa-1137, oligo DP-1 and oligo DP-5. Each cocktail enabled the establishment of a genome map-based karyotype after sequential FISH/genomic in situ hybridization (GISH) and in silico mapping. Furthermore, we identified 14 chromosomal variants of the peanut induced by radiation exposure. A total of 28 representative probes were further chromosomally mapped onto the new karyotype. Among the probes, eight were mapped in the secondary constrictions, intercalary and terminal regions; four were B genome-specific; one was chromosome-specific; and the remaining 15 were extensively mapped in the pericentric regions of the chromosomes. Conclusions The development of new oligo probes provides an effective set of tools which can be used to distinguish the various chromosomes of the peanut. Physical mapping by FISH reveals the genomic organization of repetitive oligos in peanut chromosomes. A genome map-based karyotype was established and used for the identification of chromosome variations in peanut following comparisons with their reference sequence positions.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 665-672 ◽  
Author(s):  
Zhi-Jun Cheng ◽  
Minoru Murata

AbstractFrom a wild diploid species that is a relative of wheat, Aegilops speltoides, a 301-bp repeat containing 16 copies of a CAA microsatellite was isolated. Southern blot and fluorescence in situ hybridization revealed that ∼250 bp of the sequence is tandemly arrayed at the centromere regions of A- and B-genome chromosomes of common wheat and rye chromosomes. Although the DNA sequence of this 250-bp repeat showed no notable homology in the databases, the flanking or intervening sequences between the repeats showed high homologies (>82%) to two separate sequences of the gag gene and its upstream region in cereba, a Ty3/gypsy-like retroelement of Hordeum vulgare. Since the amino acid sequence deduced from the 250 bp with seven CAAs showed some similarity (∼53%) to that of the gag gene, we concluded that the 250-bp repeats had also originated from the cereba-like retroelements in diploid wheat such as Ae. speltoides and had formed tandem arrays, whereas the 300-bp repeats were dispersed as a part of cereba-like retroelements. This suggests that some tandem repeats localized at the centromeric regions of cereals and other plant species originated from parts of retrotransposons.


2020 ◽  
Author(s):  
Liuyang Fu ◽  
Qian Wang ◽  
Lina Li ◽  
Tao Lang ◽  
Junjia Guo ◽  
...  

Abstract Background Chromosomal structural variants are important materials for crop breeding and genetic research. Oligo fluorescence in situ hybridization (oligo FISH) is a useful tool for the identification of chromosomal structural variants. Results We developed 114 new repetitive oligos based on genome-wide tandem repeats (TRs) using genomic reference sequences of the cultivar Tifrunner and the diploid species Arachis ipaensis by bioinformatics and FISH. These oligo probes were positioned and classified into 28 types. Signals produced by representative probes from eight types were in the secondary constriction, middle arm, and terminal regions; signals of four probe types were on the B subgenome; and one probe being able to produce signals on only one pair of chromosomes could be used to recognize a special genome or chromosomes of peanut. Based on new and previous oligo probes, we developed a cocktail Multiplex #3 including FAM modified TIF-439, TIF-185-1, TIF-134-3, TIF-165-3, and TAMRA modified Ipa-1162, Ipa-1137, DP-1, and DP-5, which combined with the total genomic DNA of A. duranensis and A. ipaensis probes, and 45S rDNA and 5S rDNA probes to establish a karyotype associated with the genome map of peanut and identify 14 chromosomal structural variants. Conclusions The new oligo probes are useful and convenient for distinguishing peanut chromosomes or specific segments of peanut chromosomes. Comparisons of oligo sites in the karyotype and chromosome plots of electronic location revealed the characteristics of repeated sequences, and showed that the assembly of repeated sequence in peanut genomic reference sequence was incomplete. We therefor demonstrated the great potentials of the new oligo probes in facilitating chromosome identification and characterization, and provided novel materials for further study and genetic improvement of peanut.


Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 706-713 ◽  
Author(s):  
Concha Linares ◽  
Antonio Serna ◽  
Araceli Fominaya

A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 × 104 copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 × 104 copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.Key words: chromosomal organization, in situ hybridization, intergenomic translocations, LTR sequence, oats.


Genome ◽  
1996 ◽  
Vol 39 (3) ◽  
pp. 535-542 ◽  
Author(s):  
Concha Linares ◽  
Juan González ◽  
Esther Ferrer ◽  
Araceli Fominaya

A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S–5.8S–26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A–C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C–A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S–5.8S–26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Liping Guan ◽  
Ke Cao ◽  
Yong Li ◽  
Jian Guo ◽  
Qiang Xu ◽  
...  

Abstract Background Peach (Prunus persica L.) is a diploid species and model plant of the Rosaceae family. In the past decade, significant progress has been made in peach genetic research via DNA markers, but the number of these markers remains limited. Results In this study, we performed a genome-wide DNA markers detection based on sequencing data of six distantly related peach accessions. A total of 650,693~1,053,547 single nucleotide polymorphisms (SNPs), 114,227~178,968 small insertion/deletions (InDels), 8386~12,298 structure variants (SVs), 2111~2581 copy number variants (CNVs) and 229,357~346,940 simple sequence repeats (SSRs) were detected and annotated. To demonstrate the application of DNA markers, 944 SNPs were filtered for association study of fruit ripening time and 15 highly polymorphic SSRs were selected to analyze the genetic relationship among 221 accessions. Conclusions The results showed that the use of high-throughput sequencing to develop DNA markers is fast and effective. Comprehensive identification of DNA markers, including SVs and SSRs, would be of benefit to genetic diversity evaluation, genetic mapping, and molecular breeding of peach.


Genome ◽  
2011 ◽  
Vol 54 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Matthew N. Nelson ◽  
Isobel A.P. Parkin ◽  
Derek J. Lydiate

The organisation of the Sinapis alba genome, comprising 12 linkage groups (n = 12), was compared with the Brassicaceae ancestral karyotype (AK) genomic blocks previously described in other crucifer species. Most of the S. alba genome falls into conserved triplicated genomic blocks that closely match the AK-defined genomic blocks found in other crucifer species including the A, B, and C genomes of closely related Brassica species. In one instance, an S. alba linkage group (S05) was completely collinear with one AK chromosome (AK1), the first time this has been observed in a member of the Brassiceae tribe. However, as observed for other members of the Brassiceae tribe, ancestral genomic blocks were fragmented in the S. alba genome, supporting previously reported comparative chromosome painting describing rearrangements of the AK karyotype prior to the divergence of the Brassiceae from other crucifers. The presented data also refute previous phylogenetic reports that suggest S. alba was more closely related to Brassica nigra (B genome) than to B. rapa (A genome) and B. oleracea (C genome). A comparison of the S. alba and Arabidopsis thaliana genomes revealed many regions of conserved gene order, which will facilitate access to the rich genomic resources available in the model species A. thaliana for genetic research in the less well-resourced crop species S. alba.


Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 582-587 ◽  
Author(s):  
R. J. Snowdon ◽  
W. Köhler ◽  
A. Köhler

Using fluorescence in situ hybridization, we located ribosomal DNA loci on prometaphase chromosomes of the diploid species Brassica rapa and Brassica oleracea and their amphidiploid Brassica napus. Based on comparisons of chromosome morphology and hybridization patterns, we characterized the individual B. napus rDNA loci according to their presumed origins in the Brassica A and C genomes. As reported in other studies, the sum of rDNA loci observed on B. rapa (AA genome) and B. oleracea (CC genome) chromosomes was one greater than the total number of loci seen in their amphidiploid B. napus (AACC). Evidence is presented that this reduction in B. napus rDNA locus number results from the loss of the smallest A genome rDNA site in the amphidiploid.Key words: Brassica, fluorescence in situ hybridization, ribosomal DNA, rDNA.


2018 ◽  
Author(s):  
Sylvain Glémin ◽  
Celine Scornavacca ◽  
Jacques Dainat ◽  
Concetta Burgarella ◽  
Véronique Viader ◽  
...  

AbstractBread wheat and durum wheat derive from an intricate evolutionary history of three genomes, namely A, B and D, present in both extent diploid and polyploid species. Despite its importance for wheat research, no consensus on the phylogeny of the wheat clade has emerged so far, possibly because of hybridizations and gene flows that make phylogeny reconstruction challenging. Recently, it has been proposed that the D genome originated from an ancient hybridization event between the A and B genomes1. However, the study only relied on four diploid wheat relatives when 13 species are accessible. Using transcriptome data from all diploid species and a new methodological approach, we provide the first comprehensive phylogenomic analysis of this group. Our analysis reveals that most species belong to the D-genome lineage and descend from the previously detected hybridization event, but with a more complex scenario and with a different parent than previously thought. If we confirmed that one parent was the A genome, we found that the second was not the B genome but the ancestor of Aegilops mutica (T genome), an overlooked wild species. We also unravel evidence of other massive gene flow events that could explain long-standing controversies in the classification of wheat relatives. We anticipate that these results will strongly affect future wheat research by providing a robust evolutionary framework and refocusing interest on understudied species. The new method we proposed should also be pivotal for further methodological developments to reconstruct species relationship with multiple hybridizations.


Sign in / Sign up

Export Citation Format

Share Document