scholarly journals Using Multi-Fractal and Joint Multi-Fractal Theories to Characterise the Spatial Variability of Soil Particle Size Distribution in an Underground Coalmine Area

Author(s):  
Sijia Li ◽  
Jinman Wang ◽  
Jiarui Zhang ◽  
Min Zhang

Abstract Underground coal mining leads to serious surface deformation, which negatively affects the physical properties of soils Soil particle size distribution (PSD) is one of the most basic soil physical characteristic that influences other important properties such as soil hydraulics and thermodynamics. Understanding the spatial variability of the soil PSD in subsided land can provide targeted guidance for land reclamation. In this study, we conducted a quantitative study on the spatial variability of the soil PSD in the Pingshuo mining area on the Loess plateau, Shanxi Province in China, and explored the effects of subsidence and reclamation on the soil PSD. A plot experiment, including one unmined plot (UMP), one subsided plot (SUP), and one reclaimed plot (RCP), was performed in Anjialing No.3 underground coal mine in the, Pingshuo mining area. Four multi-fractal parameters of the soil PSD—D(0), D(1), Δα(q), and Δf(α)—were analyzed at the three sample sites. The joint multi-fractal method was carried out to analyze the spatial correlation of the soil PSD to further reveal the impacts of coal mining subsidence and land reclamation on the soil PSD. The multi-fractal method can reflect the local non-uniformity and heterogeneity of the soil PSD, while the joint multi-fractal approach can illustrate the correlation of the soil PSD between different soil depths. The range and spatial variability of the soil PSD increased due to coal mining subsidence and the impact of subsidence on the spatial disturbance of the surface soil PSD was greater than that of the deeper layers. The spatial correlation of clay in subsided land was larger than those of unmined land and reclaimed land, whereas, for silt and sand, the correlation was smaller. Land reclamation decreased the spatial variability of the soil PSD, which was near that of the unmined land after reclamation.

2018 ◽  
Vol 61 (2) ◽  
pp. 591-601
Author(s):  
Jilong Liu ◽  
Lingling Zhang ◽  
Qiang Fu ◽  
Gaoqi Ren ◽  
Lu Liu ◽  
...  

Abstract. The objective of this research was to reveal the spatial variability of soil particle-size distribution heterogeneity. The farmland (48 m × 48 m) used in this study is located in the black soil region of northeast China and was divided into sixty-four 6 m × 6 m squares for sampling. The soil particle-size distribution was measured with a Mastersizer 2000. Soil particle-size distribution heterogeneity, the spatial variability of soil particle-size distribution heterogeneity, and the relationships between soil particle-size distribution heterogeneity and the clay, silt, and sand contents were studied by applying multifractal, geostatistical, and joint multifractal methods, respectively. The soil particle-size distribution had multifractal characteristics. Local information causing soil particle-size distribution heterogeneities were mainly low values of soil particle-size distribution; heterogeneities from the low-value side of the particle-size distribution were larger than those from the high-value side of the particle-size distribution. In the different soil layers, the degree of variation in soil particle-size distribution heterogeneities was moderate, with spatial correlation ranges of 37.82 m and moderate spatial dependences. At the single scale and multi-scale, the impacts of the clay, silt, and sand contents on the soil particle-size distribution heterogeneity changed with soil layer depth. The clay, silt, and sand contents had different degrees of influence on the spatial variability of soil particle-size distribution heterogeneity at the single scale and multi-scale. Multi-scale analysis could better reveal the degrees of influence of the above soil properties on the spatial variability of soil particle-size distribution heterogeneity. The results of this study enrich the knowledge of the spatial variability of soil properties and provide a reference and additional information for the quantitative characterization of soil particle-size distribution heterogeneity and soil management in this research area. Keywords: Geostatistics, Multifractal analysis, Relationship, Soil property.


2020 ◽  
Vol 188 (3) ◽  
pp. 887-899
Author(s):  
Jana Bingemer ◽  
Martin Pfeiffer ◽  
Karin Hohberg

Abstract Open-cast coal-mining creates a severe disturbance of ecological systems, resulting in post-mining areas that have lost their soils entirely and are exposed to extreme conditions. Nonetheless, these areas allow us to investigate the process of primary succession. We studied the first 12 years of soil tardigrade succession at ‘Chicken Creek’, an experimental site within the open-cast coal-mining area in Welzow Süd, Germany. A total of ten tardigrade genera and 13 species or species groups were identified at the site. Over time, the organic carbon content, proportion of silt and nutrient availability in the soil increased, and the soil particle size distribution and pH value changed significantly. The vegetation cover and nematode abundance increased, whereas tardigrade densities peaked in 2008 and decreased thereafter, as did their mean body size. Species replacement was obvious within this 12 year study period, and tardigrade species diversity increased, indicating that ecological niche diversity also increased throughout this time. Vegetation cover, soil particle size distribution and time were the most important factors influencing the tardigrade community. We also discuss further potential factors and the ability of terrestrial tardigrades to persist despite many environmental constraints, such as fluctuations in pH and moisture, and to colonize new habitats faster than most other animal groups.


2012 ◽  
Vol 446-449 ◽  
pp. 2973-2977 ◽  
Author(s):  
Qian Yang ◽  
Wen Sheng Liu

Both coal mine and land are important natural resources that human depend on for existence and development. Coal mining has contributed greatly to the development of economy and society in China. Meanwhile, subsidence induced by coal mining has seriously affected human life, ecological environment and development of regional economy in mining area. Thus, aiming at coal mining subsidence area, this paper puts forward two kinds of land reclamation techniques containing engineering reclamation technology and biological reclamation technology, which can scientifically guide land reclamation practice, coordinate relationship between human and land and relax ecological crisis.


Sign in / Sign up

Export Citation Format

Share Document