Evaluation of Particle Size Distribution of Coal Gangue through Fractal Method in Dongkuang Mine, Heshan, China

2014 ◽  
Vol 26 (8) ◽  
pp. 06014018 ◽  
Author(s):  
Zhaohui Tang ◽  
Xinxin Dong ◽  
Bo Chai ◽  
Yue Yang
2021 ◽  
Author(s):  
Sijia Li ◽  
Jinman Wang ◽  
Jiarui Zhang ◽  
Min Zhang

Abstract Underground coal mining leads to serious surface deformation, which negatively affects the physical properties of soils Soil particle size distribution (PSD) is one of the most basic soil physical characteristic that influences other important properties such as soil hydraulics and thermodynamics. Understanding the spatial variability of the soil PSD in subsided land can provide targeted guidance for land reclamation. In this study, we conducted a quantitative study on the spatial variability of the soil PSD in the Pingshuo mining area on the Loess plateau, Shanxi Province in China, and explored the effects of subsidence and reclamation on the soil PSD. A plot experiment, including one unmined plot (UMP), one subsided plot (SUP), and one reclaimed plot (RCP), was performed in Anjialing No.3 underground coal mine in the, Pingshuo mining area. Four multi-fractal parameters of the soil PSD—D(0), D(1), Δα(q), and Δf(α)—were analyzed at the three sample sites. The joint multi-fractal method was carried out to analyze the spatial correlation of the soil PSD to further reveal the impacts of coal mining subsidence and land reclamation on the soil PSD. The multi-fractal method can reflect the local non-uniformity and heterogeneity of the soil PSD, while the joint multi-fractal approach can illustrate the correlation of the soil PSD between different soil depths. The range and spatial variability of the soil PSD increased due to coal mining subsidence and the impact of subsidence on the spatial disturbance of the surface soil PSD was greater than that of the deeper layers. The spatial correlation of clay in subsided land was larger than those of unmined land and reclaimed land, whereas, for silt and sand, the correlation was smaller. Land reclamation decreased the spatial variability of the soil PSD, which was near that of the unmined land after reclamation.


2011 ◽  
Vol 225-226 ◽  
pp. 581-584
Author(s):  
Shao Hua Xu ◽  
Hao Pan

It needs a mass of data to correctly reflect a good many of complex factors and the performance of cement in the process of hydrating, researches of home and abroad are focus on data forecast by experiments and the Neural Network. The intelligent algorithm combined the Particles Algorithm and the Neural Network is used in this paper. The intelligent algorithm is applied in the process of the cement hydrating to forecast the relationship between the particle size distribution of coal gangue and expansible degree of cement.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

1995 ◽  
Vol 5 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Christine M. Woodall ◽  
James E. Peters ◽  
Richard O. Buckius

1998 ◽  
Vol 84 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Takashi INOUE ◽  
Yuzo HOSOI ◽  
Koe NAKAJIMA ◽  
Hiroyuki TAKENAKA ◽  
Tomonori HANYUDA

2020 ◽  
Vol 86 (1) ◽  
pp. 32-37
Author(s):  
Valeria A. Brodskaya ◽  
Oksana A. Molkova ◽  
Kira B. Zhogova ◽  
Inga V. Astakhova

Powder materials are widely used in the manufacture of electrochemical elements of thermal chemical sources of current. Electrochemical behavior of the powders depends on the shape and size of their particles. The results of the study of the microstructure and particles of the powders of vanadium (III), (V) oxides and lithium aluminate obtained by transmission electron and atomic force microscopy, X-ray diffraction and gas adsorption analyses are presented. It is found that the sizes of vanadium (III) and vanadium (V) oxide particles range within 70 – 600 and 40 – 350 nm, respectively. The size of the coherent-scattering regions of the vanadium oxide particles lies in the lower range limit which can be attributed to small size of the structural elements (crystallites). An average volumetric-surface diameter calculated on the basis of the surface specific area is close to the upper range limit which can be explained by the partial agglomeration of the powder particles. Unlike the vanadium oxide particles, the range of the particle size distribution of the lithium aluminate powder is narrower — 50 – 110 nm. The values of crystallite sizes are close to the maximum of the particle size distribution. Microstructural analysis showed that the particles in the samples of vanadium oxides have a rounded (V2O3) or elongated (V2O5) shape; whereas the particles of lithium aluminate powder exhibit lamellar structure. At the same time, for different batches of the same material, the particle size distribution is similar, which indicates the reproducibility of the technologies for their manufacture. The data obtained can be used to control the constancy of the particle size distribution of powder materials.


Sign in / Sign up

Export Citation Format

Share Document