scholarly journals Inner Product of Fuzzy Vectors

Author(s):  
Hsien-Chung Wu

Abstract The inner product of vectors of non-normal fuzzy intervals will be studied in this paper by using the extension principle and the form of decomposition theorem. The membership functions of inner product will be different with respect to these two different methodologies. Since the non-normal fuzzy interval is more general than the normal fuzzy interval, the corresponding membership functions will become more complicated. Therefore, we shall establish their relationship including the equivalence and fuzziness based on the a-level sets. The potential application of inner product of fuzzy vectors is to study the fuzzy linear optimization problems.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1614
Author(s):  
Hsien-Chung Wu

The arithmetic operations of fuzzy sets are completely different from the arithmetic operations of vectors of fuzzy sets. In this paper, the arithmetic operations of vectors of fuzzy intervals are studied by using the extension principle and a form of decomposition theorem. These two different methodologies lead to the different types of membership functions. We establish their equivalences under some mild conditions. On the other hand, the α-level sets of addition, difference and scalar products of vectors of fuzzy intervals are also studied, which will be useful for the different usage in applications.


Author(s):  
Álinson S. Xavier ◽  
Ricardo Fukasawa ◽  
Laurent Poirrier

When generating multirow intersection cuts for mixed-integer linear optimization problems, an important practical question is deciding which intersection cuts to use. Even when restricted to cuts that are facet defining for the corner relaxation, the number of potential candidates is still very large, especially for instances of large size. In this paper, we introduce a subset of intersection cuts based on the infinity norm that is very small, works for relaxations having arbitrary number of rows and, unlike many subclasses studied in the literature, takes into account the entire data from the simplex tableau. We describe an algorithm for generating these inequalities and run extensive computational experiments in order to evaluate their practical effectiveness in real-world instances. We conclude that this subset of inequalities yields, in terms of gap closure, around 50% of the benefits of using all valid inequalities for the corner relaxation simultaneously, but at a small fraction of the computational cost, and with a very small number of cuts. Summary of Contribution: Cutting planes are one of the most important techniques used by modern mixed-integer linear programming solvers when solving a variety of challenging operations research problems. The paper advances the state of the art on general-purpose multirow intersection cuts by proposing a practical and computationally friendly method to generate them.


2007 ◽  
Vol 49 (2) ◽  
pp. 259-270 ◽  
Author(s):  
Keyvan Aminis ◽  
Arash Haseli

AbstractInterior-Point Methods (IPMs) are not only very effective in practice for solving linear optimization problems but also have polynomial-time complexity. Despite the practical efficiency of large-update algorithms, from a theoretical point of view, these algorithms have a weaker iteration bound with respect to small-update algorithms. In fact, there is a significant gap between theory and practice for large-update algorithms. By introducing self-regular barrier functions, Peng, Roos and Terlaky improved this gap up to a factor of log n. However, checking these self-regular functions is not simple and proofs of theorems involving these functions are very complicated. Roos el al. by presenting a new class of barrier functions which are not necessarily self-regular, achieved very good results through some much simpler theorems. In this paper we introduce a new kernel function in this class which yields the best known complexity bound, both for large-update and small-update methods.


Sign in / Sign up

Export Citation Format

Share Document