scholarly journals Large and negative self-defocusing optical Kerr nonlinearity in Palladium di-Selenide 2D films

Author(s):  
David Moss

Abstract We report a large third-order nonlinear optical response of palladium diselenide (PdSe2) films – a two-dimensional (2D) noble metal dichalcogenide material. Both open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe2 film of β = 3.26 ×10− 8 m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of n2 = -1.33×10− 15 m2/W – two orders of magnitude larger than bulk silicon. We also characterize the variation of n2 as a function of laser intensity, observing that n2 decreases in magnitude with incident laser intensity, becoming saturated at n2 = -9.96×10− 16 m2/W at high intensities. These results verify the large third-order nonlinear optical response of 2D PdSe2 as well as its strong potential for high performance nonlinear photonic devices.

2020 ◽  
Author(s):  
linnan jia ◽  
Jiayang Wu ◽  
Baohua Jiao ◽  
Tieshan Yang ◽  
David Moss

<p>We report a large third-order nonlinear optical response of palladium diselenide (PdSe<sub>2</sub>) films – a two-dimensional (2D) noble metal dichalcogenide material. Both open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe<sub>2</sub> film of <i>β =</i> 3.26 × 10<sup>-8</sup> m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of <i>n</i><sub>2</sub> = -1.33×10<sup>-15</sup> m<sup>2</sup>/W – two orders of magnitude larger than bulk silicon. We also characterize the variation of <i>n</i><sub>2</sub> as a function of laser intensity, observing that <i>n</i><sub>2</sub> decreases in magnitude with incident laser intensity, becoming saturated at <i>n</i><sub>2</sub> = -9.96×10<sup>-16</sup> m<sup>2</sup>/W at high intensities. These results verify the large third-order nonlinear optical response of 2D PdSe<sub>2</sub> as well as its strong potential for high performance nonlinear photonic devices.</p>


2020 ◽  
Author(s):  
linnan jia ◽  
Jiayang Wu ◽  
Baohua Jiao ◽  
Tieshan Yang ◽  
David Moss

<p>We report a large third-order nonlinear optical response of palladium diselenide (PdSe<sub>2</sub>) films – a two-dimensional (2D) noble metal dichalcogenide material. Both open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe<sub>2</sub> film of <i>β =</i> 3.26 × 10<sup>-8</sup> m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of <i>n</i><sub>2</sub> = -1.33×10<sup>-15</sup> m<sup>2</sup>/W – two orders of magnitude larger than bulk silicon. We also characterize the variation of <i>n</i><sub>2</sub> as a function of laser intensity, observing that <i>n</i><sub>2</sub> decreases in magnitude with incident laser intensity, becoming saturated at <i>n</i><sub>2</sub> = -9.96×10<sup>-16</sup> m<sup>2</sup>/W at high intensities. These results verify the large third-order nonlinear optical response of 2D PdSe<sub>2</sub> as well as its strong potential for high performance nonlinear photonic devices.</p>


2020 ◽  
Author(s):  
linnan jia ◽  
Jiayang Wu ◽  
Baohua Jiao ◽  
Tieshan Yang ◽  
David Moss

<p>We report a large third-order nonlinear optical response of palladium diselenide (PdSe<sub>2</sub>) films – a two-dimensional (2D) noble metal dichalcogenide material. Both open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe<sub>2</sub> film of <i>β =</i> 3.26 × 10<sup>-8</sup> m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of <i>n</i><sub>2</sub> = -1.33×10<sup>-15</sup> m<sup>2</sup>/W – two orders of magnitude larger than bulk silicon. We also characterize the variation of <i>n</i><sub>2</sub> as a function of laser intensity, observing that <i>n</i><sub>2</sub> decreases in magnitude with incident laser intensity, becoming saturated at <i>n</i><sub>2</sub> = -9.96×10<sup>-16</sup> m<sup>2</sup>/W at high intensities. These results verify the large third-order nonlinear optical response of 2D PdSe<sub>2</sub> as well as its strong potential for high performance nonlinear photonic devices.</p>


2020 ◽  
Author(s):  
David Moss

We report a large third-order nonlinear optical response of palladium diselenide (PdSe2) films – a two-dimensional (2D) noble metal dichalcogenide material. Both open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe2 film of β = 3.26 ×10-8 m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of n2 = -1.33×10-15 m2/W – two orders of magnitude larger than bulk silicon. We also characterize the variation of n2 as a function of laser intensity, observing that n2 decreases in magnitude with incident laser intensity, becoming saturated at n2 = -9.96×10-16 m2/W at high intensities. These results verify the large third-order nonlinear optical response of 2D PdSe2 as well as its strong potential for high performance nonlinear photonic devices.


2021 ◽  
Author(s):  
David Moss

<p>As a novel layered noble metal dichalcogenide material, palladium diselenide (PdSe<sub>2</sub>) has attracted wide interest due to its excellent optical and electronic properties. In this work, a strong third-order nonlinear optical response of 2D PdSe<sub>2</sub> films is reported. We conduct both open-aperture (OA) and closed-aperture (CA) Z-scan measurements with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe<sub>2</sub> film of <i>β =</i> 3.26 ×10<sup>-8</sup> m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of <i>n</i><sub>2</sub> = -1.33×10<sup>-15</sup> m<sup>2</sup>/W – two orders of magnitude larger than bulk silicon. In addition, the variation of <i>n</i><sub>2</sub> as a function of laser intensity is also characterized, with <i>n</i><sub>2</sub> decreasing in magnitude when increasing incident laser intensity, becoming saturated at <i>n</i><sub>2</sub> = -9.96×10<sup>-16</sup> m<sup>2</sup>/W at high intensities. Our results show that the extraordinary third-order nonlinear optical properties of PdSe<sub>2</sub> have strong potential for high-performance nonlinear photonic devices.</p>


2021 ◽  
Author(s):  
David Moss

<p>As a novel layered noble metal dichalcogenide material, palladium diselenide (PdSe<sub>2</sub>) has attracted wide interest due to its excellent optical and electronic properties. In this work, a strong third-order nonlinear optical response of 2D PdSe<sub>2</sub> films is reported. We conduct both open-aperture (OA) and closed-aperture (CA) Z-scan measurements with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe<sub>2</sub> film of <i>β =</i> 3.26 ×10<sup>-8</sup> m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of <i>n</i><sub>2</sub> = -1.33×10<sup>-15</sup> m<sup>2</sup>/W – two orders of magnitude larger than bulk silicon. In addition, the variation of <i>n</i><sub>2</sub> as a function of laser intensity is also characterized, with <i>n</i><sub>2</sub> decreasing in magnitude when increasing incident laser intensity, becoming saturated at <i>n</i><sub>2</sub> = -9.96×10<sup>-16</sup> m<sup>2</sup>/W at high intensities. Our results show that the extraordinary third-order nonlinear optical properties of PdSe<sub>2</sub> have strong potential for high-performance nonlinear photonic devices.</p>


Author(s):  
david moss ◽  
jiayang wu

As a novel layered noble metal dichalcogenide material, palladium diselenide (PdSe2) has attracted wide interest due to its excellent optical and electronic properties. In this work, a strong third-order nonlinear optical response of 2D PdSe2 films is reported. We conduct both open-aperture (OA) and closed-aperture (CA) Z-scan measurements with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe2 film of &beta; = 3.26 &times;10-8 m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of n2 = -1.33&times;10-15 m2/W &ndash; two orders of magnitude larger than bulk silicon. In addition, the variation of n2 as a function of laser intensity is also characterized, with n2 decreasing in magnitude when increasing incident laser intensity, becoming saturated at n2 = -9.96&times;10-16 m2/W at high intensities. Our results show that the extraordinary third-order nonlinear optical properties of PdSe2 have strong potential for high-performance nonlinear photonic devices. Keywords: 2D materials, PdSe2 films, Z-scan technique, Kerr nonlinearity, nonlinear photonics.


2021 ◽  
Author(s):  
David Moss

As a novel layered noble metal dichalcogenide material, palladium diselenide (PdSe2) has attracted wide interest due to its excellent optical and electronic properties. In this work, a strong third-order nonlinear optical response of 2D PdSe2 films is reported. We conduct both open-aperture (OA) and closed-aperture (CA) Z-scan measurements with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe2 film of β = 3.26 ×10-8 m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of n2 = -1.33×10-15 m2/W – two orders of magnitude larger than bulk silicon. In addition, the variation of n2 as a function of laser intensity is also characterized, with n2 decreasing in magnitude when increasing incident laser intensity, becoming saturated at n2 = -9.96×10-16 m2/W at high intensities. Our results show that the extraordinary third-order nonlinear optical properties of PdSe2 have strong potential for high-performance nonlinear photonic devices.


2021 ◽  
Author(s):  
David Moss ◽  
jiayang wu ◽  
linnan jia

Abstract As a novel layered noble metal dichalcogenide material, palladium diselenide (PdSe2) has attracted wide interest due to its excellent optical and electronic properties. In this work, a strong third-order nonlinear optical response of 2D PdSe2 films is reported. We conduct both open-aperture (OA) and closed-aperture (CA) Z-scan measurements with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe2 film of β = 3.26 ×10− 8 m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of n2 = -1.33×10− 15 m2/W – two orders of magnitude larger than bulk silicon. In addition, the variation of n2 as a function of laser intensity is also characterized, with n2 decreasing in magnitude when increasing incident laser intensity, becoming saturated at n2 = -9.96×10− 16 m2/W at high intensities. Our results show that the extraordinary third-order nonlinear optical properties of PdSe2 have strong potential for high-performance nonlinear photonic devices.


Author(s):  
Nikolaos Liaros ◽  
Ioannis Orfanos ◽  
Ioannis Papadakis ◽  
Stelios Couris

AbstractThe nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excitation reveals the presence of both nonlinear absorption and refraction. Both nonlinear properties are of great interest for several photonics, opto-fluidics, opto-electronics and nanotechnology applications.


Sign in / Sign up

Export Citation Format

Share Document