closed aperture
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 27)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Samane Raji ◽  
Mohammad Ali Haddad ◽  
Seyed Mohammad Moshtaghioun ◽  
Zahra Dehghan

Background and Aims: Biomolecules' optical and nonlinear optical properties are widely used for different medical diagnoses and applications in biophotonic devices. These properties are essential in studying biological processes in living tissues. Aside from biomolecules' linear optical characteristics, their nonlinear optical characteristics have lately been considered. Materials and Methods: In this paper, the nonlinear optical responses of three biochemical analytes in blood serum, including glucose, triglycerides, and cholesterol are examined using the laser-based Z-Scan technique. Hence, different laboratory samples of blood serum with various concentrations of biochemical analytes are taken from patients for this purpose. Results: The normalized transmission curves were taken and analyzed in a closed aperture configuration of the Z-Scan technique and led to evaluating the nonlinear refractive index (n2) as an indicator of nonlinear responses of samples. The results show significant nonlinear optical behaviors of the samples under a strong electrical field of the laser, which leads to the measurement of the nonlinear refractive index (n2) of the samples with an error of less than ̴ 0.5 × 10-8 cm2/w. It is found that the values of nonlinear refractive index (n2) vary proportionally as a function of their concentration in blood serum. Conclusion: The findings of this study imply that the above sample's nonlinear optical response and, probable, those of other biological tissues might be used in medical diagnoses. In addition, the Z-Scan technique might be considered as a complementary method with other conventional diagnostic procedures due to its simplicity and quick experimental approach.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012035
Author(s):  
K. Rajaa Nader

Abstract In this research, the spectral properties of Absorption and Fluorescence of synthetic coconut oil (Local made) have been studied. It was found that the efficiency of coconut oil equal to (3.276%). In addition, non-linear optical properties represented by the refractive index (n2) and absorption coefficient(β) have been calculatal using three –dimensioual scanning technigue (z-scan and Helium Neom laser. Refractive inex (n2=4.231×10-7 cm2/mW) and absorption coefficient (β= 0.72373 cm/mW) have been measured from Closed-aperture part and Open-aperture part, respectively. Coconut oil has non-linear properties, where it can be utilize in nonlinear spectral applications, especially in the study the living tissue through its application and its treatment with laser.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257808
Author(s):  
Dian Alwani Zainuri ◽  
Mundzir Abdullah ◽  
Muhamad Fikri Zaini ◽  
Hazri Bakhtiar ◽  
Suhana Arshad ◽  
...  

The Ultraviolet-visible (UV-Vis) spectra indicate that anthracenyl chalcones (ACs) have high maximum wavelengths and good transparency windows for optical applications and are suitable for optoelectronic applications owing to their HOMO–LUMO energy gaps (2.93 and 2.76 eV). Different donor substituents on the AC affect their dipole moments and nonlinear optical (NLO) responses. The positive, negative, and neutral electrostatic potential regions of the molecules were identified using molecular electrostatic potential (MEP). The stability of the molecule on account of hyperconjugative interactions and accompanying charge delocalization was analyzed using natural bond orbital (NBO) analysis. Open and closed aperture Z-scans were performed using a continuous-wave frequency-doubled diode-pumped solid-state (DPSS) laser to measure the nonlinear absorption and nonlinear refractive index coefficients, respectively. The valley-to-peak profile of AC indicated a negative nonlinear refractive index coefficient. The obtained single crystals possess reverse saturation absorption due to excited-state absorption. The structural and nonlinear optical properties of the molecules have been discussed, along with the role of anthracene substitution for enhancing the nonlinear optical properties. The calculated third-order susceptibility value was 1.10 x10-4 esu at an intensity of 4.1 kW/cm2, higher than the reported values for related chalcone derivatives. The NLO response for both ACs offers excellent potential in optical switching and limiting applications.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 413
Author(s):  
Edappadikkunnummal Shiju ◽  
Kaniyarakkal Sharafudeen ◽  
T. M. Remya ◽  
N. K. Siji Narendran ◽  
Palengara Sudheesh ◽  
...  

Optical nonlinearity involved switching draws an important consideration in nonlinear optical studies. Based on that, we explored nonlinear absorption processes in silver nanoparticles synthesized by liquid phase laser ablation technique employing a second harmonic wavelength (532 nm) of Q switched Nd:YAG laser pulses with 7 ns pulse width and 10 Hz repetition rates. The typical surface plasmon resonance induced absorption (~418 nm) confirmed the formation of Ag NPs. The Z-scan technique was used to study the nonlinear optical processes, employing the same laser system used for ablation. Our study reveals that there is an occurrence of a saturable to reverse saturable absorption switching activity in the Ag nanoparticles, which is strongly on-axis input intensity dependent as well. The closed aperture Z-scan analysis revealed the self-defocusing nature of the sample.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2485
Author(s):  
Jijuan Jiang ◽  
Yang Jia ◽  
Tong Wu ◽  
Yachen Gao

The nonlinear refraction of silver nanoparticles (AgNPs) in n-hexane was studied by using the closed-aperture Z-scan technique with a 532 nm nanosecond laser. It was found that, the nonlinear refraction of AgNPs shows the coexistence and transformation from self-focusing to self-defocusing. Specifically, self-focusing occurs at low excitation intensity, self-defocusing occurs at high excitation intensity, and coexistence of self-focusing and self-defocusing occurs at relatively moderate excitation intensity. The experimental results were analysed and discussed in terms of third-order and fifth-order nonlinear refractive effect. Specifically, the self-focusing is caused by the positive third-order nonlinear refraction, the self-defocusing is induced by the negative fifth-order nonlinear refraction, and the transformation from the self-focusing to self-defocusing at medium excitation intensity is caused by the competition of third-order and fifth-order nonlinear refraction. Finally, the third-order refractive index and fifth-order refractive index were obtained.


Author(s):  
Sarfuddin Tarek ◽  
Syed Faruque ◽  
Sharif Sharafuddin ◽  
Khan Hasan ◽  
A K M Hossain ◽  
...  

2021 ◽  
Author(s):  
David Moss

Abstract We report a large third-order nonlinear optical response of palladium diselenide (PdSe2) films – a two-dimensional (2D) noble metal dichalcogenide material. Both open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe2 film of β = 3.26 ×10− 8 m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of n2 = -1.33×10− 15 m2/W – two orders of magnitude larger than bulk silicon. We also characterize the variation of n2 as a function of laser intensity, observing that n2 decreases in magnitude with incident laser intensity, becoming saturated at n2 = -9.96×10− 16 m2/W at high intensities. These results verify the large third-order nonlinear optical response of 2D PdSe2 as well as its strong potential for high performance nonlinear photonic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinho Lee ◽  
Suhyoung Kwon ◽  
Taeyoon Kim ◽  
Junha Jung ◽  
Luming Zhao ◽  
...  

AbstractAn experimental investigation into the nonlinear optical properties of rhenium diselenide (ReSe2) was conducted at a wavelength of 1.9 μm using the open-aperture and closed-aperture Z-scan techniques for the nonlinear optical coefficient (β) and nonlinear refractive index (n2) of ReSe2, respectively. β and n2 measured at 1.9 μm were ~ − 11.3 × 103 cm/GW and ~ − 6.2 × 10–2 cm2/GW, respectively, which to the best of our knowledge, are the first reported measurements for ReSe2 in the 1.9-μm spectral region. The electronic band structures of both ReSe2 and its defective structures were also calculated via the Perdew–Becke–Erzenhof functional to better understand their absorption properties. A saturable absorber (SA) was subsequently fabricated to demonstrate the usefulness of ReSe2 for implementing a practical nonlinear optical device at 1.9 μm. The 1.9-μm SA exhibited a modulation depth of ~ 8% and saturation intensity of ~ 11.4 MW/cm2. The successful use of the ReSe2-based SA for mode-locking of a thulium–holmium (Tm–Ho) co-doped fiber ring cavity was achieved with output pulses of ~ 840 fs at 1927 nm. We believe that the mode-locking was achieved through a hybrid mechanism of saturable absorption and nonlinear polarization rotation.


2021 ◽  
Author(s):  
David Moss ◽  
jiayang wu ◽  
linnan jia

Abstract As a novel layered noble metal dichalcogenide material, palladium diselenide (PdSe2) has attracted wide interest due to its excellent optical and electronic properties. In this work, a strong third-order nonlinear optical response of 2D PdSe2 films is reported. We conduct both open-aperture (OA) and closed-aperture (CA) Z-scan measurements with a femtosecond pulsed laser at 800 nm to investigate the nonlinear absorption and nonlinear refraction, respectively. In the OA experiment, we observe optical limiting behaviour originating from large two photo absorption (TPA) in the PdSe2 film of β = 3.26 ×10− 8 m/W. In the CA experiment, we measure a peak-valley response corresponding to a large and negative Kerr nonlinearity of n2 = -1.33×10− 15 m2/W – two orders of magnitude larger than bulk silicon. In addition, the variation of n2 as a function of laser intensity is also characterized, with n2 decreasing in magnitude when increasing incident laser intensity, becoming saturated at n2 = -9.96×10− 16 m2/W at high intensities. Our results show that the extraordinary third-order nonlinear optical properties of PdSe2 have strong potential for high-performance nonlinear photonic devices.


2021 ◽  
Author(s):  
C. S. JULIET BRINTHA ◽  
S.E JOEMA

Abstract Preferable, third-order nonlinear optical (NLO) single crystal, 3-Nitroanilinium chloride (3NACL) was auspiciously synthesised by slow evaporation technique. The crystal system of synthesised 3NACL crystal is triclinic with centrosymmetric space group was identified by single crystal XRD studies. All the functional groups present in the sample and its respective vibrations are analysed through FTIR analysis. UV-Vis transmittance spectrum revealed that the synthesised material was 83% transmittance and it cut-off wavelength was 276nm. The mechanical stability and thermal property of grown 3NACL crystals were ascertained by Vickers micro hardness analysis and TG/DTA analysis. The intermolecular interaction of the 3NACL was scrutinized by Hirshfeld surface analysis. Dielectric studies revealed that dielectric constant and dielectric loss were high at lower frequency region due to the space charge polarization. Inclusion free 3NACL crystal was used to analyse the Laser damage threshold (LDT) studies and its calculated LDT value was 4.3 GW/cm2. The third-order NLO parameters (β = 7.5472x10− 12 m/W, η2 = 5.6931x10− 19 m2/W, χ3 = 2.9491x10− 13 esu) of the 3NACL material was statutory evaluated by Z-scan studied. Here, β and η2 are positive value due to the saturated absorption and self-focusing effect was observed in open and closed aperture z-scan curve. Above all these findings 3NACL was suitable material for NLO and optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document