Theoretical Consideration on the Application of Continuous Wavelet Transform to Time-Series Processing for Magnetotelluric Data

2020 ◽  
Author(s):  
Hiroki Ogawa ◽  
Yuki Hama ◽  
Koichi Asamori ◽  
Takumi Ueda

Abstract In the magnetotelluric (MT) method, the responses of the natural electromagnetic fields are evaluated by transforming time-series data into spectral data and calculating the apparent resistivity and phase. The continuous wavelet transform (CWT) can be an alternative to the short-time Fourier transform, and the applicability of CWT to MT data has been reported. There are, however, few cases of considering the effect of numerical errors derived from spectral transform on MT data processing. In general, it is desirable to adopt a window function narrow in the time domain for higher-frequency components and one in the frequency domain for lower-frequency components. In conducting the short-time Fourier transform, because the size of the window function is fixed unless the time-series data are decimated, there might be difference between the calculated MT responses and the true ones due to the numerical errors. Meanwhile, CWT can strike a balance between the resolution of the time and frequency domains by magnifying or reducing the wavelet, according to the value of frequency. Although the types of wavelet functions and their parameters influence the resolution of time and frequency, those calculation settings of CWT are often determined empirically. In this study, focusing on the frequency band between 0.001 Hz and 10 Hz, we demonstrated the superiority of utilizing CWT in MT data processing and determined its proper calculation settings in terms of restraining the numerical errors caused by the spectral transform of time-series data. The results obtained with the short-time Fourier transform accompanied with gradual decimation of the time-series data, called cascade decimation, were compared with those of CWT. The shape of the wavelet was changed by using different types of wavelet functions or their parameters, and the respective results of data processing were compared. Through these experiments, this study indicates that CWT with the complex Morlet function with its wavelet parameter k set to 6 ≤ k < 10 will be effective in restraining the numerical errors caused by the spectral transform.

Author(s):  
Puneet Agarwal ◽  
William Walker ◽  
Kenneth Bhalla

The most probable maximum (MPM) is the extreme value statistic commonly used in the offshore industry. The extreme value of vessel motions, structural response, and environment are often expressed using the MPM. For a Gaussian process, the MPM is a function of the root-mean square and the zero-crossing rate of the process. Accurate estimates of the MPM may be obtained in frequency domain from spectral moments of the known power spectral density. If the MPM is to be estimated from the time-series of a random process, either from measurements or from simulations, the time series data should be of long enough duration, sampled at an adequate rate, and have an ensemble of multiple realizations. This is not the case when measured data is recorded for an insufficient duration, or one wants to make decisions (requiring an estimate of the MPM) in real-time based on observing the data only for a short duration. Sometimes, the instrumentation system may not be properly designed to measure the dynamic vessel motions with a fine sampling rate, or it may be a legacy instrumentation system. The question then becomes whether the short-duration and/or the undersampled data is useful at all, or if some useful information (i.e., an estimate of MPM) can be extracted, and if yes, what is the accuracy and uncertainty of such estimates. In this paper, a procedure for estimation of the MPM from the short-time maxima, i.e., the maximum value from a time series of short duration (say, 10 or 30 minutes), is presented. For this purpose pitch data is simulated from the vessel RAOs (response amplitude operators). Factors to convert the short-time maxima to the MPM are computed for various non-exceedance levels. It is shown that the factors estimated from simulation can also be obtained from the theory of extremes of a Gaussian process. Afterwards, estimation of the MPM from the short-time maxima is explored for an undersampled process; however, undersampled data must not be used and only the adequately sampled data should be utilized. It is found that the undersampled data can be somewhat useful and factors to convert the short-time maxima to the MPM can be derived for an associated non-exceedance level. However, compared to the adequately sampled data, the factors for the undersampled data are less useful since they depend on more variables and have more uncertainty. While the vessel pitch data was the focus of this paper, the results and conclusions are valid for any adequately sampled narrow-banded Gaussian process.


1987 ◽  
Vol 22 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Zehava Frostig ◽  
Ron D. Frostig

2021 ◽  
Author(s):  
David Howe

Statistical imputation is a field of study that attempts to fill missing data. It is commonly applied to population statistics whose data have no correlation with running time. For a time series, data is typically analyzed using the autocorrelation function (ACF), the Fourier transform to estimate power spectral densities (PSD), the Allan deviation (ADEV), trend extensions, and basically any analysis that depends on uniform time indexes. We explain the rationale for an imputation algorithm that fills gaps in a time series by applying a backward, inverted replica of adjacent live data. To illustrate, four intentional massive gaps that exceed 100% of the original time series are recovered. The L(f) PSD with imputation applied to the gaps is nearly indistinguishable from the original. Also, the confidence of ADEV with imputation falls within 90% of the original ADEV with mixtures of power-law noises. The algorithm in Python is included for those wishing to try it.


Sign in / Sign up

Export Citation Format

Share Document