scholarly journals Global Polygons For Terrain Classification Divided Into Uniform Slopes And Basins

Author(s):  
Junko Iwahashi ◽  
Dai Yamazaki

Abstract Global terrain classification data have been used for various issues that are known to be related to topography, such as estimation of soil types, estimation of Vs30, and creation of seismic hazard maps. However, due to the resolution of the DEMs used, the terrain classification data from previous studies could not discriminate small landforms, such as narrow valley bottom plains, and small-rises within the plains. We created a global polygon dataset of the shapefile format divided into uniform slopes from slope gradients and HAND (height above the nearest drainage) calculated using the 90m spatial resolution MERIT DEM, and combined this data with the unit catchments of MERIT-Basins. This dataset contains the calculated terrain measurements (slope gradient, HAND, surface texture, local convexity, Sinks) and polygon areas as attributes, as well as the ID number of the MERIT-Basins’ unit catchment. In addition, the results of k-means clustering using slope gradient, HAND, and surface texture, which can be joined with the dataset as a simple terrain classification, are also available. This dataset can be used as a proxy and is expected to contribute to the modeling and estimation of various points that are known to be related to topography.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Junko Iwahashi ◽  
Dai Yamazaki ◽  
Takayuki Nakano ◽  
Ryo Endo

AbstractThis study aims to create a terrain classification of Japan that allows both geomorphological and geoengineering classifications coexist without large contradictions and to distinguish landform elements even in urban plains which include noise associated with digital elevation models (DEMs). Because Japan is susceptible to natural disasters, we designed the classification to reflect the ground vulnerability of both alluvial plains and mountains through the application of terrain classification data to landslide susceptibility and seismic zoning. We updated an existing DEM-based terrain classification method for application in the high-resolution 30 m DEM. We used topographic measurements that do not amplify manmade unevenness or noise, which are usually the main problems associated with the use of high-resolution DEMs with high vertical accuracies. We selected the height above the nearest drainage (HAND), slope gradient, surface texture, and local convexity as geometric signatures, which were devised so as not to detect noise. Segment polygon data of terrain units were derived from the raster data of slope and HAND. The polygon data were classified into 40 clusters using the attributes of slope, HAND, and surface texture; then they were grouped into 16 legends following comparisons with the existing geological and geomorphological maps and supplementary reclassification by HAND and local convexity. The derived terrain classification, except for manmade cuts and fills, showed similarities with the existing expert-driven maps and some association with areas where shallow landslides or floods frequently occur. Based on a trial in California using a 30 m DEM, we concluded that the proposed method can be adopted in other regions outside of Japan.


2009 ◽  
Vol 99 (2A) ◽  
pp. 585-610 ◽  
Author(s):  
A. Akinci ◽  
F. Galadini ◽  
D. Pantosti ◽  
M. Petersen ◽  
L. Malagnini ◽  
...  

1997 ◽  
Vol 14 (2-3) ◽  
pp. 141-154 ◽  
Author(s):  
R. M. W. Musson ◽  
P. W. Winter

2006 ◽  
Vol 77 (1) ◽  
pp. 23-29 ◽  
Author(s):  
C. H. Cramer ◽  
J. S. Gomberg ◽  
E. S. Schweig ◽  
B. A. Waldron ◽  
K. Tucker

Author(s):  
Chris H. Cramer ◽  
Joan S. Gomberg ◽  
Eugene S. Schweig ◽  
Brian A. Waldron ◽  
Kathleen Tucker

2019 ◽  
Vol 41 (4) ◽  
pp. 289-304 ◽  
Author(s):  
Paolo Rugarli ◽  
Franco Vaccari ◽  
Giuliano Panza

A fixed increment of magnitude is equivalent to multiply the seismic moment by a factor γEM related to the partial factor γq acting on the seismic moment representing the fault. A comparison is made between the hazard maps obtained with the Neo-Deterministic Seismic Hazard Assessment (NDSHA), using two different approaches: one based on the events magnitude, listed in parametric earthquake catalogues compiled for the study areas, with sources located within the seismogenic zones; the other uses the seismogenic nodes identified by means of pattern recognition techniques applied to morphostructural zonation (MSZ), and increases the reference magnitude by a constant amount tuned by the safety factor γEM.Using γEM=2.0, in most of the territory the two approaches produce totally independent, comparable hazard maps, based on the quite long Italian catalogue. This represents a validation of the seismogenic nodes method and a tuning of the safety factor γEM at about 2.


2021 ◽  
Vol 331 ◽  
pp. 07009
Author(s):  
I Wayan Sengara ◽  
Fahmi Aldiamar

General assessment on earthquake resistance spectral design load criteria for buildings and infrastructures associated with the recent development of Indonesian seismic hazard maps is presented in this paper. The assessment is directed toward general identification of their associated risks for input to policy formulation of disaster risk reduction management plans or strategies. Indonesian seismic hazard maps haveevolved for the last three decades. This is originated from an early development map before 2002, where a seismic hazard map particularly for buildings (1983) was developed adopting the early process of probabilisticseismic hazard analysis (PSHA) for 200 years return period (RP). Further, a 2002 version seismic hazard maphas been developed in the form of peak ground acceleration (PGA) for 500 years RP. Spectral design criteriafor buildings and bridges have been later developed by updating PSHA involving new seismic source zones, ground-motion predictive equations, and various earthquake RP, accommodating seismic codes for buildings(2500 years RP), for bridges (1000 years RP) and dams involving various RP up to 10,000 years RP correspond to its design level. The spectral accelerations also have included PGA, short (0.2s) period, and 1-s period. The latest update hazard maps (2017) have been developed and adopted for seismic codes for buildings, bridges, dams, and other related infrastructures. The increase in spectral design load criteria is identified to assess the general risk of existing constructions, considering the results of several recent building damage surveys. Adoption of new seismic codes based on the most recent hazard maps along with its enforcement is expected to contribute to seismic disaster risk reduction in Indonesia.


2004 ◽  
Vol 390 (1-4) ◽  
pp. 159-175 ◽  
Author(s):  
James G. Tanner ◽  
Kaye M. Shedlock

Sign in / Sign up

Export Citation Format

Share Document