A Novel Effect of PDLIM5 In α7 Nicotinic Acetylcholine Receptors Up-Regulation And Surface Expression

Author(s):  
Zilin Li ◽  
Chenyu Gou ◽  
Wenhui Wang ◽  
Yuan Li ◽  
Yu Cui ◽  
...  

Abstract α7 neuronal nicotinic acetylcholine receptors (α7nAChRs) are expressed widely in the brain, where they contribute to a variety of behaviors including arousal and cognition, participate in a number of neurodegenerative disorders including Alzheimer’s and Parkinson’s disease, and is responsible for nicotine addiction. Although recent studies indicate that the PDZ-containing proteins comprising PSD-95 family co-localize with nicotinic acetylcholine receptors and mediate downstream signaling in the neurons, the mechanisms by which α7nAChRs are regulated are still less well understood. Here we show that the regulation of the α7nAChRs is controlled by PDLIM5 in the endogenous PDZ domain proteins family. We find that chronic exposure to 1 μM nicotine up-regulated both α7, β2-contained nAChRs and PDLIM5 in primary cultured hippocampal neurons, and the up-regulation of α7nAChRs and PDLIM5 is increased more on the cell membrane than the cytoplasm. Interestingly, the α7nAChRs and β2nAChRs display distinct patterns of expression, with α7 co-localized more with PDLIM5. Meanwhile, PDLIM5 interacts with native brain α7 but not β2 nAChRs in neurons. Moreover, knocking down of PDLIM5 in heterologous cells abolishes nicotine-induced up-regulation of α7nAChRs. In cultured hippocampal neurons, shRNA against PDLIM5 decreased both surface clustering of α7nAChRs and α7nAChRs mediated currents. Proteomics analysis shows PDLIM5 interacts with α7nAChRs through the PDZ domain and the interaction between PDLIM5 and α7nAChRs can be promoted by nicotine. Collectively, our data suggest a novel cellular role of PDLIM5 in regulating α7nAChRs, which may be relevant to plastic changes in the nervous system.

2008 ◽  
Vol 181 (3) ◽  
pp. 511-521 ◽  
Author(s):  
Melissa L. Hancock ◽  
Sarah E. Canetta ◽  
Lorna W. Role ◽  
David A. Talmage

Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.


Sign in / Sign up

Export Citation Format

Share Document