camp levels
Recently Published Documents


TOTAL DOCUMENTS

1017
(FIVE YEARS 110)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yu Hao ◽  
Zhikai Lei ◽  
Nanjing Shi ◽  
Lingying Yu ◽  
Weiqin Ji ◽  
...  

ObjectiveWe identified a novel inactivating mutation in the calcium-sensing receptor (CaSR) gene in a patient with refractory hypocalciuric hypercalcemia and analyzed its function. The effectiveness of radiofrequency ablation of the parathyroid glands to treat hypercalcemia caused by this mutation was explored.MethodsClinical data of patients before and after radiofrequency ablation were retrospectively analyzed. The CaSR mutation (D99N) found in the patient was studied in cell lines. HEK-293 cells were transfected with plasmids containing wild-type (WT) or mutant CaSR genes (D99N and W718X). Expression levels of the respective CaSR proteins were measured, and their functions were assessed by examining the effect of NPS R-568 (a CaSR agonist) on intracellular Ca2+ oscillations and that of exogenous parathyroid hormone (PTH) on intracellular cyclic adenosine monophosphate (cAMP) levels.ResultsThe effectiveness of pharmacological treatment was poor, whereas radiofrequency ablation of the parathyroid glands resulted in controlled blood calcium and PTH levels in the patient. In cell lines, upon NPS R-568 administration, the amplitude of intracellular Ca2+ oscillations in the D99N group was lower than that in the WT group and higher than that in the W718X group. Upon administration of PTH, intracellular cAMP levels in the D99N group were higher than those in the WT group and lower than those in the W718X group.ConclusionThe homozygous mutation D99N reduced CaSR activity and caused more severe hypocalciuric hypercalcemia. For patients with this type of hypercalcemia and poor response to pharmacological treatments, radiofrequency ablation of the parathyroid glands may be a suitable treatment option.


2022 ◽  
Vol 6 (1) ◽  
pp. 248-258
Author(s):  
Jan Zlamal ◽  
Karina Althaus ◽  
Hisham Jaffal ◽  
Helene Häberle ◽  
Lisann Pelzl ◽  
...  

Abstract Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2 virus. The exact mechanisms of COVID-19-associated hypercoagulopathy, however, remain elusive. Recently, we observed that platelets (PLTs) from patients with severe COVID-19 infection express high levels of procoagulant markers, which were found to be associated with increased risk for thrombosis. In the current study, we investigated the time course as well as the mechanisms leading to procoagulant PLTs in COVID-19. Our study demonstrates the presence of PLT-reactive IgG antibodies that induce marked changes in PLTs in terms of increased inner-mitochondrial transmembrane potential (Δψ) depolarization, phosphatidylserine (PS) externalization, and P-selectin expression. The IgG-induced procoagulant PLTs and increased thrombus formation were mediated by ligation of PLT Fc-γ RIIA (FcγRIIA). In addition, contents of calcium and cyclic-adenosine-monophosphate (cAMP) in PLTs were identified to play a central role in antibody-induced procoagulant PLT formation. Most importantly, antibody-induced procoagulant events, as well as increased thrombus formation in severe COVID-19, were inhibited by Iloprost, a clinically approved therapeutic agent that increases the intracellular cAMP levels in PLTs. Our data indicate that upregulation of cAMP could be a potential therapeutic target to prevent antibody-mediated coagulopathy in COVID-19 disease.


2022 ◽  
Vol 23 (2) ◽  
pp. 579
Author(s):  
Cheng-Yi Chang ◽  
Chih-Cheng Wu ◽  
Jiaan-Der Wang ◽  
Su-Lan Liao ◽  
Wen-Ying Chen ◽  
...  

Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.


2021 ◽  
Vol 55 (6) ◽  
pp. 784-804

BACKGROUND/AIMS: Cystic fibrosis transmembrane conductance regulator (CFTR), the anion channel that is defective in cystic fibrosis (CF), is phosphorylated and activated by cAMP-dependent protein kinase (PKA). cAMP levels are downregulated by a large family of phosphodiesterases that have variable expression in different cell types. We have previously observed high levels of PDE8A expression in well-differentiated primary human bronchial epithelial (pHBE) cells and thus aimed to assess whether it played a role in cAMP-dependent regulation of CFTR activity. METHODS: We assessed the effect of the selective PDE8 inhibitor PF-04957325 (PF) on intracellular cAMP levels ([cAMP]i) in well differentiated pHBE cells from non-CF or CF donors and also in CFBE41o- cells that stably express wild-type CFTR (CFBE41o- WT) using ELISA and FRET-FLIM microscopy. CFTR channel function was also measured using electrophysiological recordings from pHBE and CFBE41o- WT cells mounted in Ussing Chambers. RESULTS: PDE8 inhibition elevated [cAMP]i in well-differentiated pHBE cells and stimulated wild-type CFTR-dependent ion transport under basal conditions or after cells had been pre-stimulated with physiological cAMP-elevating agents. The response to PDE8 inhibition was larger than to PDE3 or PDE5 inhibition but smaller and synergistic with that elicited by PDE4 inhibition. CRISPR Cas9-mediated knockdown of PDE8A enhanced CFTR gene and protein expression yet reduced the effect of PDE8 inhibition. Acute pharmacological inhibition PDE8 increased CFTR activity in CF pHBE cells (F508del/F508del and F508del/R117H-5T) treated with clinically-approved CFTR modulators. CONCLUSION: These results provide the first evidence that PDE8A regulates CFTR and identifies PDE8A as a potential target for adjunct therapies to treat CF.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Richard Sando ◽  
Milan Lyndie Ho ◽  
Xinran Liu ◽  
Thomas C. Südhof

The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as “SynTAMs” for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Kira Beneke ◽  
Nefeli Grammatika Pavlidou ◽  
Andreas Schäfer ◽  
Viacheslav O. Nikolaev ◽  
Cristina E. Molina

Atrial fibrillation (AF) has been linked to the remodeling of membrane receptors and alterations in downstream cAMP-dependent regulation. However, to date, no study has elucidated how the increase on cAMP upon different G-protein-coupled receptors (GPCRs) can lead to different physiological compartmentalized responses. The aim of this study was to investigate the compartmentally specific effects of GPCRs on cAMP levels in human atrial myocytes (HAMs) from patients with AF and control patients without AF (Ctl), and how these compartmentalized effects are altered in AF. HAMs were isolated from 60 AF and 76 Ctl patient tissues. Cells were transduced with adenoviruses (Epac1-camps, pm-Epac1-camps and Epac1-JNC) and cultured for 48 hours to express the FRET-based cAMP sensor in the cytosolic, membrane, and RYR2 nanodomains. Förster-resonance energy transfer (FRET) was used to measure cAMP levels in 525 HAMs stimulated with isoprenaline (100 µM), serotonin (100 µM), or the A2AR agonist CGS (200 nM). A desensitization to β-adrenergic receptor stimulation was exclusively found in the cytosol of AF myocytes, while no difference was seen in the RYR2 or LTCC compartment. Similar effects were observed upon serotonin stimulation with a significant desensitization in the cytosol, and no difference in the RYR2 compartment. In response to A2ARs stimulation AF myocytes displayed a significantly higher cytosolic increase in cAMP levels. However, no response was seen in the LTCC compartment in response to serotonin or A2AR stimulation. Collectively, our data show that cAMP levels are highly compartmentalized and differentially regulated by GPCRs. Furthermore, these results provide a mechanistic insight for the previously reported functional effects seen upon stimulation of these three receptors.


Author(s):  
yogendra Singh ◽  
Neeraj Fuloria ◽  
Shivkanya Fuloria ◽  
Vetriselvan Subramaniyan ◽  
Waleed Almalki ◽  
...  

COVID-19 has spread globally, affecting almost 160 million individuals. Elderly and pre-existing patients (such as diabetes, heart disease and asthma), seems more susceptible to serious illness with COVID-19. Roflumilast was licensed for usage in the European Union in July 2010 as a phosphodiesterase-4 (PDE4) inhibitor. Roflumilast has been shown to decrease bleomycin-induced lung fibrosis, lung hydroxyproline, right heart thickning in animal prophylactic. The current study reviewed existing data that the PDE-4 inhibitor protects not just renal tissues but also other major organ systems after COVID-19 infection by decreasing immune cell infiltration. These immune-balancing effects of roflumilast were related with a decrease in oxidative and inflammatory burden, caspase-3 suppression, and increased PKA/cAMP levels in renal and other organ tissue.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi34-vi34
Author(s):  
Joshua Frenster ◽  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Devin Bready ◽  
Jordan Wilcox ◽  
...  

Abstract We previously demonstrated that GPR133 (ADGRD1), an adhesion GPCR that signals via cytosolic cAMP increase, is de novo expressed in glioblastoma (GBM) and enriched in patient-derived glioblastoma stem cells. Knockdown of GPR133 reduces GBM cell proliferation and tumorsphere formation, and abolishes orthotopic xenograft initiation in vivo. GPR133’s requirement for GBM growth and its absence in non-malignant brain suggest its therapeutic potential, yet its mechanisms of action and activation remained unclear. Here, we demonstrate in patient-derived GBM cultures and HEK293T cells that GPR133 gets intramolecularly cleaved into N-terminal and C-terminal fragments (NTF and CTF) right after synthesis in the endoplasmic reticulum. The resulting NTF and CTF remain non-covalently bound to each other, until the mature receptor reaches the plasma membrane, where we observe dissociation of the extracellular NTF from the transmembrane-spanning CTF. While cleavage is not required for correct subcellular trafficking, the cleaved wild-type GPR133 generates significantly higher cytosolic cAMP levels than an uncleavable point mutant GPR133 (H543R), suggesting that cleavage and dissociation are involved in receptor activation. To test this hypothesis in a more controllable proxy system, we generated a fusion of the CTF of GPR133 and the N-terminus of human protease-activated receptor 1 (hPAR1). Indeed, acute thrombin-induced cleavage and shedding of the hPAR1 NTF increases intracellular cAMP levels generated by the GPR133 CTF. These results support a model wherein dissociation of the NTF from the CTF at the plasma membrane promotes GPR133 activation and downstream signaling. To test whether extracellular binding proteins could influence NTF shedding and/or GPR133 signaling activation, we conducted ligand discovery screens and indeed found a new GPR133 binding protein in GBM cells, which is capable of influencing receptor signaling. Together, these findings provide critical insights into GPR133’s mechanism of activation, that will guide future approaches of therapeutic targeting of GPR133 in GBM.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6588
Author(s):  
Je-Oh Lim ◽  
Woong-Il Kim ◽  
Se-Jin Lee ◽  
So-Won Pak ◽  
Young-Kwon Cho ◽  
...  

Chronic obstructive pulmonary disease (COPD) is a significant disease threatening human health. Currently, roflumilast, a phosphodiesterase (PDE)4 inhibitor, is recommended as a therapeutic agent for COPD. In this study, we investigated the therapeutic effects of melatonin against COPD, focusing on determining whether it is a PDE4 inhibitor via in vivo and in vitro experiment using cigarette smoke (CS) and cigarette smoke condensate (CSC), respectively. In the in vivo experiments, melatonin treatment reduced inflammatory responses, including inflammatory cell counts. Melatonin treatment also suppressed the CS-exposure-induced upregulation of cytokine and matrix metalloproteinase (MMP)-9, reduced the PDE4B expression, and elevated cAMP levels. In addition, these effects were synergistic, as melatonin and roflumilast cotreatment eventually ameliorated the CS-exposure-induced worsening of lung function. In the CSC-stimulated NCI-H292 cells, melatonin inhibited elevation in the levels of inflammatory cytokines, MMP-9, and PDE4, and elevated cAMP levels. Furthermore, melatonin and roflumilast cotreatment was more effective on inflammatory responses than only melatonin or roflumilast treatment. Our results indicate that melatonin relieves inflammatory response and loss of lung function in COPD, which is associated with decreased PDE4 expression. Therefore, we suggest that melatonin is a putative candidate for the treatment of COPD.


Sign in / Sign up

Export Citation Format

Share Document