scholarly journals Modulation of Myosin by Cardiac Myosin Binding Protein-C Peptides Improves Cardiac Contractility in Ex-Vivo Experimental Heart Failure Models

Author(s):  
Luqia Hou ◽  
Mohit Kumar ◽  
Priti Anand ◽  
Yinhong Chen ◽  
Nesrine El-Bizri ◽  
...  

Abstract Cardiac myosin binding protein-C (cMyBP-C) is an important regulator of sarcomeric function. Although reduced phosphorylation of cMyBP-C has been linked to compromised contractility in heart failure patients, direct modulation of cMyBP-C to myosin using small molecules or peptides has not been reported to improve cardiac performance. Here we used previously published cMyBP-C peptides 302A and 302S (surrogates to the regulatory phosphorylation site serine 302) as tool molecules to investigate the role of cMyBP-C in modulating cardiac contraction and relaxation in experimental heart failure (HF) models in vitro. cMyBP-C peptides 302A and 302S were able to increase contractility of papillary muscle fibers isolated from a cMyBP-C phospho-ablation (cMyBP-CAAA) mouse model. In addition, 302A was able to improve the force redevelopment rate (ktr) in papillary muscle fibers from cMyBP-CAAA mice. Consistent with above findings, cMyBP-C peptides 302A and 302S were able to increase the ATPase rates in myofibrils isolated from MI rats but not from sham rats. Furthermore, in cMyBP-CAAA mouse and myocardial infarction (MI) HF models, both cMyBP-C peptides 302A and 302S were able to improve ATPase hydrolysis rates. These changes were not observed in non-transgenic (NTG) mice or sham rats, indicating the specific effects of these peptides in regulating the reduced or unphosphorylated state of cMyBP-C only under pathological conditions of heart failure. Taken together, these studies demonstrate that modulation of cMyBP-C in a reduced phosphorylation or unphosphorylated state can be a therapeutic approach to improve myosin function, sarcomere contractility and relaxation. Therefore, targeting cMyBP-C can be a differentiated approach to improve overall cardiac performance on top of standard care drugs in HF patients.

2007 ◽  
Vol 43 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Ali El-Armouche ◽  
Lutz Pohlmann ◽  
Saskia Schlossarek ◽  
Jutta Starbatty ◽  
Yung-Hsin Yeh ◽  
...  

2016 ◽  
Vol 30 (5) ◽  
pp. 1849-1864 ◽  
Author(s):  
Konstantina Stathopoulou ◽  
Ilka Wittig ◽  
Juliana Heidler ◽  
Angelika Piasecki ◽  
Florian Richter ◽  
...  

2016 ◽  
Vol 38 (2) ◽  
pp. 418-424 ◽  
Author(s):  
Doaa El Amrousy ◽  
Hossam Hodeib ◽  
Ghada Suliman ◽  
Nahed Hablas ◽  
Eman Ramadan Salama ◽  
...  

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Rohit Singh ◽  
Sakthivel Sadayappan

Rationale: Normal heart function depends on cardiac myosin binding protein-C (cMyBP-C) phosphorylation. Its decrease is associated with heart failure (HF) by inhibiting actomyosin interactions. In absence of cMyBP-C phosphorylation, the protein is bound to myosin S2, but released when phosphorylated, allowing myosin to form cross-bridges with actin. Challenging cMyBP-C/myosin S2 interaction by myopeptide (the first 126 amino acids of myosin S2) could promote actomyosin interaction in vitro , but its ability to improve contractility in HF remains untested. Objective: To test contractile function in skinned papillary fibers of a cMyBP-C dephosphorylated mouse model using myopeptide. Methods and Results: To mimic constitutive phosphoablation, a knock-in mouse model was established to express cMyBP-C in which serines 273, 282 and 302 were mutated to alanine (cMyBP-C AAA ). Western blotting revealed 50% and 100% of cMyBP-C AAA in het and homo mouse hearts, respectively. Echocardiography showed a decreased percentage of ejection fraction (28%, p<0.01) and fractional shortening (30%, p< 0.05) in both het and homo cMyBP-C AAA mice at 3 months of age, compared to knock-in negative controls. These mice also developed diastolic dysfunction with elevated ratio of E/A and E/e’ waves. Next, pCa-force measurements using skinned papillary fibers determined that maximal force (F max ) and rate of cross-bridge formation ( k tr ) were decreased in the cMyBP-C AAA groups, compared to the control. However, administration of dose-dependent myopeptide increased F max and k tr in wild-type and cMyBP-C AAA permeabilized skinned papillary fibers without affecting myofilament Ca 2+ sensitivity. Conclusions: Myopeptide can increase contractile force and rate of cross-bridge formation by releasing cMyBP-C/myosin S2 and promoting actomyosin formation of cross-bridges, thus validating its therapeutic potential.


2000 ◽  
Vol 276 (7) ◽  
pp. 5353-5359 ◽  
Author(s):  
Christian C. Witt ◽  
Brenda Gerull ◽  
Michael J. Davies ◽  
Thomas Centner ◽  
Wolfgang A. Linke ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35242 ◽  
Author(s):  
Cho-Kai Wu ◽  
Yin-Tsen Huang ◽  
Jen-Kuang Lee ◽  
Liang-Ting Chiang ◽  
Fu-Tien Chiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document