scholarly journals A Locking Plate Designed With Cluster of Head Screws Would Be Biomechanically Superior Than Conventional Buttress Plate For The Fixation of Posteromedial Tibial Plateau Fractures: A Computational Assessment

Author(s):  
Kai-Cheng Lin ◽  
Yih-Wen Tarng ◽  
Kun-Jhih Lin ◽  
Hung-Wen Wei

Abstract Background: Dealing with high-energy fractures of the tibial plateau remains a challenge despite advances in implants, surgical approaches, and imaging methods. Posterior buttress plate is most commonly used implant but the fixation stability is still a challenge. Recently, a newly designed tibial locking plate was introduced that aims to provide better fixation strength for tibial plateau split fracture. This study compared the biomechanical strength of three different posteromedial tibial plateau split fracture fixation methods. Methods: The tibial plateau fractures were simulated using a human tibiae model. Each fracture model was virtually implanted with one of the three following constructs, proximal medial tibial plate (PMT), proximal posterior medial tibial plate (PPMT), and posterior T-shaped buttress plate (TBP). Posteromedial fragment vertical subsidence was measured under 2000 N joint contact force. The maximum Equivalent stress on the bone plate and bone screw and the construct stiffness were determined.Results: The proximal medial tibial plate (PMT) allowed the least posteromedial fragment subsidence and produced higher construct stiffness than each of the other two constructs. However, the proximal posterior medial tibial plate (PPMT) showed higher stiffness than the T-shaped buttress plate (TBP). The maximum Equivalent stress was the smallest for the proximal medial tibial plate (PMT).Conclusion: This study showed that the proximal medial tibial locking plate or proximal posterior medial tibial locking plate were biomechanically more stable fixation methods for posteromedial split tibial plateau fractures.

2021 ◽  
Author(s):  
Kai Cheng Lin ◽  
Yih Wen Tarng ◽  
Hung-Wen Wei ◽  
Kun-Jhih Lin

Abstract Background: Dealing with high-energy fractures of the tibial plateau remains a challenge despite advances in implants, surgical approaches, and imaging methods. Posterior buttress plate is most commonly used implant but the fixation stability is still a challenge. Recently, a newly designed tibial locking plate was introduced that aims to provide better fixation strength for tibial plateau split fracture. This study compared the biomechanical strength of three different posteromedial tibial plateau split fracture fixation methods. Methods: The tibial plateau fractures were simulated using a human tibiae model. Each fracture model was virtually implanted with one of the three following constructs, proximal medial tibial plate (PMT), proximal posterior medial tibial plate (PPMT), and posterior T-shaped buttress plate (TBP). Posteromedial fragment vertical subsidence was measured under 2000 N joint contact force. The maximum Equivalent stress on the bone plate and bone screw and the construct stiffness were determined.Results: The proximal medial tibial plate (PMT) allowed the least posteromedial fragment subsidence and produced higher construct stiffness than each of the other two constructs. However, the proximal posterior medial tibial plate (PPMT) showed higher stiffness than the T-shaped buttress plate (TBP). The maximum Equivalent stress was the smallest for the proximal medial tibial plate (PMT).Conclusion: This study showed that the proximal medial tibial locking plate or proximal posterior medial tibial locking plate were biomechanically more stable fixation methods for posteromedial split tibial plateau fractures.


2018 ◽  
Vol 32 (4) ◽  
pp. e117-e122 ◽  
Author(s):  
Elliot R. Row ◽  
David E. Komatsu ◽  
J. Tracy Watson ◽  
Clifford Jones ◽  
Stephen Kottmeier

2016 ◽  
Vol 19 (6) ◽  
pp. 342-347 ◽  
Author(s):  
Kavin Khatri ◽  
Vijay Sharma ◽  
Darsh Goyal ◽  
Kamran Farooque

2018 ◽  
Vol 31 (10) ◽  
pp. 1007-1014 ◽  
Author(s):  
Marcello Castiglia ◽  
Marcello Nogueira-Barbosa ◽  
Andre Messias ◽  
Rodrigo Salim ◽  
Fabricio Fogagnolo ◽  
...  

AbstractSchatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker (p < 0.01). The addition of computed tomography scans to plain radiographs improved the interobserver reliability of Schatzker classification. Computed tomography had a statistically significant impact in the selection of surgical approaches for the lateral tibial plateau.


2013 ◽  
Vol 27 (01) ◽  
pp. 021-030 ◽  
Author(s):  
Jeffrey Maclean ◽  
Utku Kandemir

2015 ◽  
Vol 29 (01) ◽  
pp. 012-020 ◽  
Author(s):  
Stephen Warner ◽  
Dean Lorich ◽  
Matthew Garner

Sign in / Sign up

Export Citation Format

Share Document