WIND TUNNEL INVESTIGATIONS OF TRANSONIC TEST SECTIONS. PHASE I. TESTS OF A 22.5-PERCENT OPEN-AREA PERFORATED-WALL TEST SECTION IN CONJUNCTION WITH A SONIC NOZZLE

1953 ◽  
Author(s):  
WILLIAM L. CHEW
1960 ◽  
Vol 1 (3) ◽  
pp. 357-367 ◽  
Author(s):  
T. M. Cherry

This is a sequel to a recent paper [1] on the construction by the hodograph method of trans-sonic nozzle-flows of a perfect gas. At the end of that paper it was shown how we can obtain regular flows that are ultimately uniform (as required in the test section of a supersonic wind tunnel), and the object now is to give some quantitative examples of such flows. The gas is supposed to have the polytropic equation of state Pρ−γ = constant, and the calculations have been made for the case γ = 1.4, with the Mach number M = 2.25 at the test section. The results, which are exhibited graphically, are indicative of what may be expected for other supersonic values of M, and it is hoped that they may be significant for the design of wind tunnels.


2013 ◽  
Vol 5 (3) ◽  
pp. 305-314 ◽  
Author(s):  
Luciana Bassi Marinho Pires ◽  
Igor Braga De Paula ◽  
Gilberto Fisch ◽  
Ralf Gielow ◽  
Roberto Da Mota Girardi

1997 ◽  
Vol 200 (10) ◽  
pp. 1441-1449 ◽  
Author(s):  
C J Pennycuick ◽  
T Alerstam ◽  
A Hedenström

A new wind tunnel for experiments on bird flight was completed at Lund University, Sweden, in September 1994. It is a closed-circuit design, with a settling section containing five screens and a contraction ratio of 12.25. The test section is octagonal, 1.20 m wide by 1.08 m high. The first 1.2 m of its length is enclosed by acrylic walls, and the last 0.5 m is open, giving unrestricted access. Experiments can be carried out in both the open and closed parts, and comparison between them can potentially be used to measure the lift effect correction. The fan is driven by an a.c. motor with a variable-frequency power supply, allowing the wind speed to be varied continuously from 0 to 38 m s-1. The whole machine can be tilted to give up to 8 ° descent and 6 ° climb. A pitot-static survey in the test section showed that the air speed was within ±1.3 % of the mean at 116 out of 119 sample points, exceeding this deviation at only three points at the edges. A hot-wire anemometer survey showed that the turbulence level in the closed part of the test section was below 0.04 % of the wind speed throughout most of the closed part of the test section, rising to approximately 0.06 % in the middle of the open part. No residual rotation from the fan could be detected in the test section. No decrease in wind speed was detectable beyond 3 cm from the side walls of the closed part, and turbulence was minimal beyond 10 cm from the walls. The installation of a safety net at the entrance to the test section increased the turbulence level by a factor of at least 30, to 1.2 % longitudinally and 1.0 % transversely.


Sign in / Sign up

Export Citation Format

Share Document