implicit time integration
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 1)

2022 ◽  
Vol 41 (2) ◽  
pp. 1-21
Author(s):  
Tao Du ◽  
Kui Wu ◽  
Pingchuan Ma ◽  
Sebastien Wah ◽  
Andrew Spielberg ◽  
...  

We present a novel, fast differentiable simulator for soft-body learning and control applications. Existing differentiable soft-body simulators can be classified into two categories based on their time integration methods: Simulators using explicit timestepping schemes require tiny timesteps to avoid numerical instabilities in gradient computation, and simulators using implicit time integration typically compute gradients by employing the adjoint method and solving the expensive linearized dynamics. Inspired by Projective Dynamics ( PD ), we present Differentiable Projective Dynamics ( DiffPD ), an efficient differentiable soft-body simulator based on PD with implicit time integration. The key idea in DiffPD is to speed up backpropagation by exploiting the prefactorized Cholesky decomposition in forward PD simulation. In terms of contact handling, DiffPD supports two types of contacts: a penalty-based model describing contact and friction forces and a complementarity-based model enforcing non-penetration conditions and static friction. We evaluate the performance of DiffPD and observe it is 4–19 times faster compared with the standard Newton’s method in various applications including system identification, inverse design problems, trajectory optimization, and closed-loop control. We also apply DiffPD in a reality-to-simulation ( real-to-sim ) example with contact and collisions and show its capability of reconstructing a digital twin of real-world scenes.


2022 ◽  
Vol 448 ◽  
pp. 110766
Author(s):  
Severiano González-Pinto ◽  
Domingo Hernández-Abreu ◽  
Maria S. Pérez-Rodríguez ◽  
Arash Sarshar ◽  
Steven Roberts ◽  
...  

2021 ◽  
Vol 2090 (1) ◽  
pp. 012145
Author(s):  
Ryuma Honda ◽  
Hiroki Suzuki ◽  
Shinsuke Mochizuki

Abstract This study presents the impact of the difference between the implicit and explicit time integration methods on a steady turbulent flow field. In contrast to the explicit time integration method, the implicit time integration method may produce significant kinetic energy conservation error because the widely used spatial difference method for discretizing the governing equations is explicit with respect to time. In this study, the second-order Crank-Nicolson method is used as the implicit time integration method, and the fourth-order Runge-Kutta, second-order Runge-Kutta and second-order Adams-Bashforth methods are used as explicit time integration methods. In the present study, both isotropic and anisotropic steady turbulent fields are analyzed with two values of the Reynolds number. The turbulent kinetic energy in the steady turbulent field is hardly affected by the kinetic energy conservation error. The rms values of static pressure fluctuation are significantly sensitive to the kinetic energy conservation error. These results are examined by varying the time increment value. These results are also discussed by visualizing the large scale turbulent vortex structure.


2021 ◽  
Author(s):  
Benjamin Southworth ◽  
Tomasso Buvoli ◽  
Oliver Krzysik ◽  
Will Pazner ◽  
Hans De Sterck

2021 ◽  
Vol 1 (1) ◽  
pp. 108-120
Author(s):  
Huimin Zhang ◽  
Runsen Zhang ◽  
Andrea Zanoni ◽  
Pierangelo Masarati

Sign in / Sign up

Export Citation Format

Share Document