Fatigue-Fracture Properties of a Semi-Austenitic Precipitation Hardening Stainless Steel

1988 ◽  
Author(s):  
R. Farrara
Alloy Digest ◽  
2002 ◽  
Vol 51 (11) ◽  

Abstract Allvac 13-8 has good fabricability and can be age hardened by a single treatment in the range 510-620 deg C (950-1150 deg F). Cold working prior to aging enhances the aging. This martensitic precipitation-hardening stainless steel has very good resistance to general corrosion and stress-corrosion cracking. It develops very high strength and exhibits good transverse ductility and toughness in heavy sections. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-866. Producer or source: Allvac Metals Company.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract AL 17-7 alloy, a precipitation hardening stainless steel, has moderate corrosion resistant characteristics and develops high strenth in the precipitation hardened condition. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating and joining. Filing Code: SS-528. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1991 ◽  
Vol 40 (8) ◽  

Abstract LESCALLOY 15-5 VAC-ARC is a precipitation hardening martensitic stainless steel with minimal delta ferrite. Vacuum arc remelting in the production of the alloy provides a low gas content, clean steel with optimum transverse properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-522. Producer or source: Latrobe Steel Company.


Alloy Digest ◽  
1988 ◽  
Vol 37 (6) ◽  

Abstract Allegheny Ludlum AL 15-7 Alloy is a chromium-nickel-molybdenum-aluminum semi-austenitic stainless steel. It is heat treatable to high strength and it has a moderate level of corrosion resistance. It is available both as a conventionally melted product and as vacuum arc or electroslag refined material. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-496. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2009 ◽  
Vol 58 (5) ◽  

Abstract Crucible 174 SXR is a premium-quality precipitation-hardening stainless steel designed for use as rifle barrels. It is a modification of Crucible’s 17Cr-4Ni that offers substantially improved machinability without sacrificing toughness. Its excellent corrosion resistance approaches that of a 300 series austenitic stainless steel, while its high strength is characteristic of 400 series martensitic stainless steels. At similar hardness levels, Crucible 174 SXR offers greater toughness than either the 410 or 416 stainless steels which are commonly used for rifle barrels. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming and heat treating. Filing Code: SS-1034. Producer or source: Crucible Service Centers.


Alloy Digest ◽  
1954 ◽  
Vol 3 (8) ◽  

Abstract Donegal DC-50 is a precipitation hardening stainless steel having high strength-weight ratio. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: SS-17. Producer or source: Donegal Manufacturing Corporation.


2015 ◽  
Vol 71 (12) ◽  
pp. 339-344 ◽  
Author(s):  
Nordin M. N. A. ◽  
Yuta Makino ◽  
Koichi Goda ◽  
Hirokazu Ito

Sign in / Sign up

Export Citation Format

Share Document