Knowledge-Based Natural Language Understanding: A AAAI-87 Survey Talk

1991 ◽  
Author(s):  
Wendy G. Lehnert
Author(s):  
B. Yang ◽  
P. Datseris

In order to enhance the knowledge acquisition capability of the expert system DOMES (Design Of Mechanisms by an Expert System), which is developed at the University of Rhode Island for creative type synthesis of mechanisms, methodologies have been developed to build a knowledge engineer module based on natural language understanding. Specifically, artificial intelligence concepts and Lisp programming techniques have been incorporated in this module to implement the following: (1) analysing and understanding design criteria supplied by human designers in the form of English sentences; and (2) transforming these design criteria into Lisp code and storing them in the knowledge base of DOMES. This knowledge engineer module enhances the capability and improves the performance of the expert system DOMES by providing an effective means for knowledge acquisition based on natural language understanding. The concepts and implementation techniques in developing this module are general and can also be utilized for other knowledge-based systems.


1998 ◽  
Vol 37 (04/05) ◽  
pp. 327-333 ◽  
Author(s):  
F. Buekens ◽  
G. De Moor ◽  
A. Waagmeester ◽  
W. Ceusters

AbstractNatural language understanding systems have to exploit various kinds of knowledge in order to represent the meaning behind texts. Getting this knowledge in place is often such a huge enterprise that it is tempting to look for systems that can discover such knowledge automatically. We describe how the distinction between conceptual and linguistic semantics may assist in reaching this objective, provided that distinguishing between them is not done too rigorously. We present several examples to support this view and argue that in a multilingual environment, linguistic ontologies should be designed as interfaces between domain conceptualizations and linguistic knowledge bases.


1995 ◽  
Vol 34 (04) ◽  
pp. 345-351 ◽  
Author(s):  
A. Burgun ◽  
L. P. Seka ◽  
D. Delamarre ◽  
P. Le Beux

Abstract:In medicine, as in other domains, indexing and classification is a natural human task which is used for information retrieval and representation. In the medical field, encoding of patient discharge summaries is still a manual time-consuming task. This paper describes an automated coding system of patient discharge summaries from the field of coronary diseases into the ICD-9-CM classification. The system is developed in the context of the European AIM MENELAS project, a natural-language understanding system which uses the conceptual-graph formalism. Indexing is performed by using a two-step processing scheme; a first recognition stage is implemented by a matching procedure and a secondary selection stage is made according to the coding priorities. We show the general features of the necessary translation of the classification terms in the conceptual-graph model, and for the coding rules compliance. An advantage of the system is to provide an objective evaluation and assessment procedure for natural-language understanding.


Sign in / Sign up

Export Citation Format

Share Document