Front-Boundary Layer Models from STORM-FEST Observations.

1995 ◽  
Author(s):  
William Blumen
2020 ◽  
Vol 86 (2) ◽  
Author(s):  
Dov J. Rhodes ◽  
William M. Farrell

The problem of plasma expansion into a vacuum is revisited with the addition of a finite boundary condition; an electrically insulated surface. As plasma expands towards a charge-accumulating surface, the leading electron cloud charges the surface negatively, which in turn repels electrons and attracts ions. This plasma–surface interaction is shown to result in a feedback process which accelerates the plasma expansion. In addition, we examine the decrease in (negative) surface potential and associated near-surface electron density. To investigate this plasma coupling with an electrically floating surface, we develop an analytic model including four neighbouring plasma regions: (i) undisturbed plasma, (ii) quasi-neutral self-similar expansion, (iii) ion front boundary layer and (iv) electron cloud. A key innovation in our approach is a self-contained analytic approximation of the ion front boundary layer, providing a spatially continuous electric field model for the early phase of bounded plasma expansion.


Tellus B ◽  
2001 ◽  
Vol 53 (4) ◽  
pp. 441-461 ◽  
Author(s):  
E. D. NILSSON ◽  
Ü. RANNIK ◽  
M. KULMALA ◽  
G. BUZORIUS ◽  
C. D. O'DOWD

2007 ◽  
Vol 25 ◽  
pp. 49-55 ◽  
Author(s):  
S. Argentini ◽  
I. Pietroni ◽  
G. Mastrantonio ◽  
A. Viola ◽  
S. Zilitinchevich

Sign in / Sign up

Export Citation Format

Share Document