benthic boundary layer
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 16)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Paulo Bonifácio ◽  
Lenka Neal ◽  
Lénaïck Menot

The polymetallic nodules lying on the seafloor of the Clarion-Clipperton Fracture Zone (CCFZ) represent over 30 billion metric tons of manganese. A single mining operation has potential to directly impact approximately 200 km2 of the seabed per year. Yet, the biodiversity and functioning of the bentho-demersal ecosystem in the CCFZ remain poorly understood. Recent studies indicate a high species diversity in a food-poor environment, although the area remains poorly sampled. Undersampling is aggravated by a combination of low densities of fauna and high habitat heterogeneity at multiple spatial scales. This study examines the Polynoidae, a diverse family of mobile polychaetes. Sampling with an epibenthic sledge and a remotely operated vehicle was performed during the cruise SO239 within the eastern CCFZ. Five areas under the influence of a sea surface productivity gradient were visited. Specimens were identified using morphology and DNA: (i) to provide a more comprehensive account of polynoid diversity within the CCFZ, (ii) to infer factors potentially driving alpha and beta diversity, and (iii) to test the hypothesis that epibenthic polychaetes have low species turnover and large species range. Patterns of species turnover across the eastern CCFZ were correlated with organic carbon fluxes to the seafloor but there was also a differentiation in the composition of assemblages north and south of the Clarion fracture. In contrast to the previous studies, patterns of alpha taxonomic and phylogenetic diversity both suggest that polynoid assemblages are the most diverse at Area of Particular Environmental Interest no. 3, the most oligotrophic study site, located north of the Clarion fracture. Without ruling out the possibility of sampling bias, the main hypothesis explaining such high diversity is the diversification of polynoid subfamily Macellicephalinae, in response to oligotrophy. We propose that macellicephalins evolved under extremely low food supply conditions through adoption of a semi-pelagic mode of life, which enabled them to colonise new niches at the benthic boundary layer and foster their radiation at great depths.


2021 ◽  
Vol 8 ◽  
Author(s):  
Damianos Chatzievangelou ◽  
Nixon Bahamon ◽  
Séverine Martini ◽  
Joaquin del Rio ◽  
Giorgio Riccobene ◽  
...  

The deep sea (i.e., >200 m depth) is a highly dynamic environment where benthic ecosystems are functionally and ecologically connected with the overlying water column and the surface. In the aphotic deep sea, organisms rely on external signals to synchronize their biological clocks. Apart from responding to cyclic hydrodynamic patterns and periodic fluctuations of variables such as temperature, salinity, phytopigments, and oxygen concentration, the arrival of migrators at depth on a 24-h basis (described as Diel Vertical Migrations; DVMs), and from well-lit surface and shallower waters, could represent a major response to a solar-based synchronization between the photic and aphotic realms. In addition to triggering the rhythmic behavioral responses of benthic species, DVMs supply food to deep seafloor communities through the active downward transport of carbon and nutrients. Bioluminescent species of the migrating deep scattering layers play a not yet quantified (but likely important) role in the benthopelagic coupling, raising the need to integrate the efficient detection and quantification of bioluminescence into large-scale monitoring programs. Here, we provide evidence in support of the benefits for quantifying and continuously monitoring bioluminescence in the deep sea. In particular, we recommend the integration of bioluminescence studies into long-term monitoring programs facilitated by deep-sea neutrino telescopes, which offer photon counting capability. Their Photo-Multiplier Tubes and other advanced optical sensors installed in neutrino telescope infrastructures can boost the study of bioluminescent DVMs in concert with acoustic backscatter and video imagery from ultra-low-light cameras. Such integration will enhance our ability to monitor proxies for the mass and energy transfer from the upper ocean into the deep-sea Benthic Boundary Layer (BBL), a key feature of the ocean biological pump and crucial for monitoring the effects of climate-change. In addition, it will allow for investigating the role of deep scattering DVMs in the behavioral responses, abundance and structure of deep-sea benthic communities. The proposed approach may represent a new frontier for the study and discovery of new, taxon-specific bioluminescence capabilities. It will thus help to expand our knowledge of poorly described deep-sea biodiversity inventories and further elucidate the connectivity between pelagic and benthic compartments in the deep-sea.


Author(s):  
Guy Sisma‐Ventura ◽  
Barak Herut ◽  
Jacob Silverman ◽  
Timor Katz ◽  
Maxim Rubin‐Blum ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 180
Author(s):  
Verónica Molina ◽  
Marcela Cornejo-D’Ottone ◽  
Eulogio H. Soto ◽  
Eduardo Quiroga ◽  
Guillermo Alarcón ◽  
...  

The Eastern South Pacific coastal zone is characterized by seasonal and interannual variability, driven by upwelling and El Niño Southern Oscillation (ENSO), respectively. These oceanographical conditions influence microbial communities and their contribution to nutrient and greenhouse gases recycling, especially in bottom waters due to oxygenation. This article addresses the seasonal hydrographic and biogeochemical conditions in the water and sediments during El Niño 2015. Bottom water active microbial communities, including nitrifiers, were studied using amplicon sequencing of 16S rRNA (cDNA) and RT-qPCR, respectively. The results of the hydrographic analysis showed changes in the water column associated with the predominance of sub-Antarctic Waters characterized by warmed and low nutrients in the surface and more oxygenated conditions at the bottom in comparison with El Niño 2014. The organic matter quantity and quality decreased during fall and winter. The bottom water active microbial assemblages were dominated by archaea (Ca. Poseidoniales) and putative ammonia oxidizing archaea. Active bacteria affiliated to SAR11, Marinimicrobia and Nitrospina, and oxygen deficient realms (Desulfobacterales, SUP05 clade and anammox) suffered variations, possibly associated with oxygen and redox conditions in the benthic boundary layer. Nitrifying functional groups contributed significantly more during late fall and winter which was consistent with higher bottom water oxygenation. Relationships between apparent oxygen utilization nitrate and nitrous oxide in the water support the contribution of nitrification to this greenhouse gas distribution in the water. In general, our study suggests that seasonal oceanographic variability during an El Niño year influences the microbial community and thus remineralization potential, which supports the need to carry out longer time series to identify the relevance of seasonality under ENSO in Eastern Boundary Upwelling Systems (EBUS) areas.


2021 ◽  
Vol 7 ◽  
Author(s):  
Ulrike Hanz ◽  
Lindsay Beazley ◽  
Ellen Kenchington ◽  
Gerard Duineveld ◽  
Hans Tore Rapp ◽  
...  

The Scotian Shelf harbors unique aggregations of the glass sponge Vazella pourtalesii that provides an important habitat for benthic and pelagic fauna. Recent studies have shown that these sponge grounds have persisted in the face of strong inter-annual and multi-decadal variability in temperature and salinity. However, little is known of these environmental characteristics on hourly-seasonal time scales. This study presents the first hydrodynamic observations and associated (food) particle supply mechanisms for the Vazella sponge grounds, highlighting the influence of natural variability in environmental conditions on sponge growth and resilience. Near-bottom environmental conditions were characterized by high temporal resolution data collected with a benthic lander, deployed during a period of 10 months in the Sambro Bank Sponge Conservation Area. The lander was equipped with temperature and oxygen sensors, a current meter, a sediment trap and a video camera. In addition, water column profiles of temperature and salinity were collected in an array across the sponge grounds from high to lower sponge presence probability. Over the course of the lander deployment, temperature fluctuated between 8.8–12°C with an average of 10.6 ± 0.4°C. Dissolved oxygen concentration was on average 6.3 mg l–1, and near-bottom current speed was on average 0.12 m s–1, with peaks up to 0.47 m s–1. Semi-diurnal tidal currents promoted constant resuspension of particulate matter in the benthic boundary layer. Surface storm events episodically caused extremely turbid conditions on the seafloor that persisted for several days, with particles being resuspended to more than 13 m above the seabed. The carbon flux in the near-bottom sediment trap peaked during storm events and also after a spring bloom in April, when fresh phytodetritus was observed in the bottom boundary layer. While resuspension events can represent a major stressor for sponges, limiting their filtration capability and remobilizing them, episodes of strong currents and lateral particle transport likely play an important role in food supply and the replenishment of nutrients and oxygen. Our results contextualize human-induced threats such as bottom fishing and climate change by providing more knowledge of the natural environmental conditions under which sponge grounds persist.


Author(s):  
H E Parry ◽  
A Atkinson ◽  
P J Somerfield ◽  
P K Lindeque

Abstract Zooplankton monitoring in shelf seas predominantly uses nets that miss the benthic boundary layer (BBL) just above the seabed. However, this boundary between pelagic and benthic assemblages can be faunistically rich, having its own distinct hyperbenthic fauna and acting as a low-light refuge for overwintering or dielly migrating zooplankton. To compare species richness and composition between pelagic and BBL habitats, we sampled a long-term monitoring site in the Western English Channel seasonally. Metabarcoding methods applied to vertical net samples (top 50 m in a ∼54-m water column) and those from a hyperbenthic sledge generated >100 000 sequences clustered into 294 operational taxonomic units. Of these, 215 were found in the BBL and 170 in the water column. Some key taxa (e.g. mysids) were native to the BBL; by contrast, other delicate taxa (e.g. ctenophores) seemed to avoid the BBL. The major contrasts in plankton composition related to the seasonal cycle rather than to pelagic-BBL differences, suggesting that the basic dynamics of the site are captured by our ongoing long-term weekly resolution monitoring. Overall, metabarcoding approaches, applied to both water column and BBL, provide an independent view of plankton dynamics, and augment existing traditional methods.


Author(s):  
Olivier Laroche ◽  
Oliver Kersten ◽  
Craig R. Smith ◽  
Erica Goetze

AbstractDiverse and remote deep-sea communities are critically under-sampled and increasingly threatened by anthropogenic impacts. Environmental DNA (eDNA) metabarcoding could facilitate rapid and comprehensive biotic surveys in the deep ocean, yet many aspects of the sources and distribution of eDNA in the deep sea are still poorly understood. In order to examine the influence of the water column on benthic eDNA surveys in regions targeted for deep-sea polymetallic nodule mining, we investigated the occurrence of pelagic eDNA across: (1) two different deep-sea habitat types, abyssal plains and seamounts, (2) benthic sample types, including nodules, sediment, and seawater within the benthic boundary layer (BBL), and (3) sediment depth horizons (0-2 cm, 3-5 cm). Little difference was observed between seamounts and the adjacent abyssal plains in the proportion of legacy pelagic eDNA sampled in the benthos, despite an > 1000 m depth difference for these habitats. In terms of both reads and amplicon sequence variants (ASVs), pelagic eDNA was minimal within sediment and nodule samples (< 2%), and is unlikely to affect benthic surveys that monitor resident organisms at the deep seafloor. However, pelagic eDNA was substantial within the BBL (up to 13 % ASVs, 86% reads), deriving both from the high biomass upper ocean as well as deep pelagic residents. While most pelagic eDNA found in sediments and on nodules could be sourced from the epipelagic for metazoans, protist legacy eDNA sampled on these substrates appeared to originate across a range of depths in the water column. Some evidence of eDNA degradation across a vertical sediment profile was observed for protists, with higher diversity in the 0-2 cm layer and a significantly lower proportion of legacy pelagic eDNA in deeper sediments (3-5 cm). Study-wide, our estimated metazoan sampling coverage ranged from 40% to 74%, despite relatively large sample size. Future deep-sea eDNA surveys should examine oceanographic influences on eDNA transport and residence times, consider habitat heterogeneity at a range of spatial scales in the abyss, and aim to process large amounts of material per sample (with replication) in order to increase the sampling coverage in these diverse deep ocean communities.


2020 ◽  
Author(s):  
Martin Austin ◽  
Ben Lincoln ◽  
Guy Walker-Springett

&lt;p&gt;The shallow continental shelf is increasingly used to site infrastructure for marine energy conversion and aquaculture. In this shallow typically energetic environment, tides and waves cause significant sediment fluxes, which interact with and are modified by emplaced infrastructure. This contribution presents observational field data to quantify non-equilibrium turbulent stresses caused by an obstruction in a tidal flow and its impact on suspended sediment transport.&lt;/p&gt;&lt;p&gt;Observations of the turbulent properties of the benthic boundary layer (BBL) in an energetic nearshore environment were made over a 4-month period in Cemaes Bay, Anglesey, UK. The area experiences a high energy semi-diurnal tidal regime with a maximum range of 7.5&amp;#160;m. Tidal current velocities were a maximum of 1.1 m s&lt;sup&gt;&amp;#8722;1&lt;/sup&gt; during springs tides and the strength of the tides ensures that the water column was vertically well mixed. An instrumented lander deployed in 13 m depth on a region of flat sand-sheet sampled the turbulent flows in the BBL using a pulse coherent Nortek Aquadopp and a Vector ADV. An Acoustic Backscatter System was mounted coincidently to sample suspended sediment concentrations.&lt;/p&gt;&lt;p&gt;Vertical profiles of mean flow show that during the flood tide an obstruction upstream of the sampling region modified the BBL causing the breakdown of the constant stress layer and a reduction in velocity shear compared to the opposing ebb tide currents. The turbulent dissipation rate computed using the inertial dissipation and structure functions methods illustrate an order of magnitude increase in dissipation and identify a strongly non-equilibrium relationship between turbulent dissipation and production during flood tides, which varies with elevation above the seabed. The non-equilibrium turbulence effects the suspension and transport of seabed sediments by modifying the vertical profile of sediment diffusivity. These effects are quantified and impacts discussed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document