Computer Generation of Statistical Distributions

Author(s):  
Richard Saucier
2020 ◽  
Vol 4 (97) ◽  
pp. 69-76
Author(s):  
IGOR N. SILVERSTOV

A stochastic approach has been developed to evaluate fatigue strength using elements of the fracture mechanics. The article presents a method for determining the initial parameters of statistical distributions. It also considers the method for constructing a fatigue curve for a component of any size and configuration with any given probability of failure.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1601
Author(s):  
Radu Drobot ◽  
Aurelian Florentin Draghia ◽  
Daniel Ciuiu ◽  
Romică Trandafir

The Design Flood (DF) concept is an essential tool in designing hydraulic works, defining reservoir operation programs, and identifying reliable flood hazard maps. The purpose of this paper is to present a methodology for deriving a Design Flood hydrograph considering the epistemic uncertainty. Several appropriately identified statistical distributions allow for the acceptable approximation of the frequent values of maximum discharges or flood volumes, and display a significant spread for their medium/low Probabilities of Exceedance (PE). The referred scattering, as a consequence of epistemic uncertainty, defines an area of uncertainty for both recorded data and extrapolated values. In considering the upper and lower values of the uncertainty intervals as limits for maximum discharges and flood volumes, and by further combining them compatibly, a set of DFs as completely defined hydrographs with different shapes result for each PE. The herein proposed procedure defines both uni-modal and multi-modal DFs. Subsequently, such DFs help water managers in examining and establishing tailored approaches for a variety of input hydrographs, which might be typically generated in river basins.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Ryuho Kataoka

Abstract Statistical distributions are investigated for magnetic storms, sudden commencements (SCs), and substorms to identify the possible amplitude of the one in 100-year and 1000-year events from a limited data set of less than 100 years. The lists of magnetic storms and SCs are provided from Kakioka Magnetic Observatory, while the lists of substorms are obtained from SuperMAG. It is found that majorities of events essentially follow the log-normal distribution, as expected from the random output from a complex system. However, it is uncertain that large-amplitude events follow the same log-normal distributions, and rather follow the power-law distributions. Based on the statistical distributions, the probable amplitudes of the 100-year (1000-year) events can be estimated for magnetic storms, SCs, and substorms as approximately 750 nT (1100 nT), 230 nT (450 nT), and 5000 nT (6200 nT), respectively. The possible origin to cause the statistical distributions is also discussed, consulting the other space weather phenomena such as solar flares, coronal mass ejections, and solar energetic particles.


Sign in / Sign up

Export Citation Format

Share Document