magnetic observatory
Recently Published Documents


TOTAL DOCUMENTS

914
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
V. Lesur ◽  
N. Gillet ◽  
M. D. Hammer ◽  
M. Mandea

AbstractEvidence of fast variations in the Earth’s core field are seen both in magnetic observatory and satellite records. We present here how they have been identified at the Earth’s surface from ground-based observatory records and how their spatio-temporal structure is now characterised by satellite data. It is shown how their properties at the core mantle boundary are extracted through localised and global modelling processes, paying particular attention to their time scales. Finally are listed possible types of waves in the liquid outer core, together with their main properties, that may give rise to these observed fast variations.


2021 ◽  
Vol 26 (4) ◽  
pp. 326-343
Author(s):  
L. F. Chernogor ◽  
◽  
K. P. Garmash ◽  
Y. H. Zhdanko ◽  
S. G. Leus ◽  
...  

Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv. Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison. Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11). Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere. Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave


2021 ◽  
Author(s):  
Yvelice-Soraya Castillo-Rosales ◽  
Allan-Jeff Calderini-Castro ◽  
Daysi-Carolina Gómez-Medina ◽  
Misael-Arnaldo Espinal-Valladares ◽  
Oscar-Ronaldo García-Melgar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2 (5) ◽  
pp. 57-58
Author(s):  
Jyh-Woei Lin

The planetary K-index (Kp index) was a geomagnetic index in the H-component field. This index was calculated from data collected by a network of 13 ground-based magnetometer stations at mid-latitude locations from the International Real-time Magnetic Observatory Network (INTERMAGNET). The magnitudes of Kp index could indicate geomagnetic activity using the integer K-scale from 0 to 9 without dimension because the K-scale was estimated using the quasi-logarithms algorithm. The Kp index indicated geomagnetic storms under the condition of K-scale>4. The three-hourly Kp index has been commonly used. The three-hourly Kp index was relatively stable for low‐variability geomagnetic activity. The hourly Kp index represented the level of auroral absorption with a more accurate characterization. For future research, the Kp index with a high sampling rate (e.g., <1 hour) could be considered, so that a very accurate characterization was characterized the more detailed geomagnetic activity of global region.


2021 ◽  
Vol 2 (5) ◽  
pp. 1-2
Author(s):  
Jyh-Woei Lin

The International Real-time Magnetic Observatory Network (INTERMAGNET) was based on the Observatory Instruments in Ottawa, Canada in August 1986. After coordination between the United States and British Geological Surveys, this network could use to record Earth’s magnetic field e.g., Disturbance storm time (Dst) index that monitored a large geomagnetic storm. The INTERMAGNET has been used in to access the observed communicating. The production of geomagnetic products could be obtained in real-time. Overseeing the operations of INTERMAGNET, the first geomagnetic Information Node (GIN) was established in 1991, the first CD-ROM/DVD was published in 1991.


2021 ◽  
Author(s):  
Manoj Nair ◽  
Arnaud Chulliat ◽  
Adam Woods ◽  
Patrick Alken ◽  
Brian Meyer ◽  
...  

Abstract Magnetic wellbore positioning depends on an accurate representation of the Earth's magnetic field,where the borehole azimuth is inferred by comparing the magnetic field measured-whiledrilling (MWD) with a geomagnetic reference model. Therefore, model accuracy improvements reduce the position uncertainties. An improved high-resolution model describing the core, crustal and external components of the magnetic field is presented, and it is validated with anindependent set of measurements. Additionally, we benchmark it against other high-resolution geomagnetic models. The crustal part of the improved high-definition model is based on NOAA/NCEI's latest magnetic survey compilation "EMAG2v3" which includes over 50 millionnew observations in several parts of the world, including the Gulf of Mexico and Antarctica, and does not rely on any prior information from sea-floor geology, unlike earlier versions. The core field part of the model covers years 1900 through 2020 andis inferred from polar-orbiting satellite data as well as ground magnetic observatory data. The external field part is modelled to degree and order 1 for years 2000 through 2020. The new model has internal coefficients to spherical harmonic degree and order 790, resolving magnetic anomalies to approximately 51 km wavelength at the equator. In order to quantitatively assess its accuracy, the model was compared with independent shipborne, airborne and ground magnetic measurements. We find that the newmodel has comparable or smaller errors than the other models benchmarkedagainst it over the regions of comparisons. Additionally, we compare theimproved model against magnetic datacollected from MWD; the residual error lies well within the accepted industry error model, which may lead tofuture error model improvements.


2021 ◽  
Vol 43 (3) ◽  
pp. 181-192
Author(s):  
T. P. Sumaruk ◽  
P. V. Sumaruk

According to the data of world observatories net secular variations of geomagnetic fields from internal and outer sources have been studied. Averaged 3-year data have been used for this purpose. Procedure of calculations of secular variations from internal and outer sources according to observatories data has been submitted. 1979 has been chosen as a zero level for accounting secular variations from outer sources because the sign of the large-scale magnetic field has changed this year. It has been shown that the value of secular variations from outer sources is different for different regions and increases with the growth of the latitude of magnetic observatory. Maximal values of secular variations are observed in the northern polar cap as well as at the longitudes of the eastern focus of secular variation. It has been shown that at the DIK, CSS, TIK observatories secular variations have maximal values. Groups of observatories have been segregated with symmetric and asymmetric changes of secular variation comparing to 1979. Symmetric changes of secular variation during two Hail’s cycles are observed at the observatories in circumpolar area (ALE, NAL, BJN), in auroral and middle latitudes. Maximal asymmetry of secular variation is observed at the observatories GDH, BLC, FCC, as well as at certain subauroral observatories and the regions with raised seismic activity. Secular variation from outer sources depends on the value of the large scale magnetic field of the Sun. The value of secular variation from the inner sources has been modulated by the outer sources and depends on special features of underlying surfaces of the observatories, induction currents in particular.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Fernando Benitez-Paez ◽  
Vanessa da Silva Brum-Bastos ◽  
Ciarán D. Beggan ◽  
Jed A. Long ◽  
Urška Demšar

Abstract Background Migratory animals use information from the Earth’s magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. Methods We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency’s Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. Results We find that the average absolute error of intensity is − 21.6 nT (95% CI [− 22.26555, − 20.96664]), which is at the lower range of the intensity that animals can sense. The main predictor of error is the level of geomagnetic disturbance, given by the Kp index (indicating the presence of a geomagnetic storm). Since storm level disturbances are rare, this means that our tool is suitable for studies of animal geomagnetic navigation. Caution should be taken with data obtained during geomagnetically disturbed days due to rapid and localised changes of the field which may not be adequately captured. Conclusions By using our new tool, ecologists will be able to, for the first time, access accurate real-time satellite geomagnetic data at the location and time of each tracked animal, without having to start new tracking studies with specialised magnetic sensors. This opens a new and exciting possibility for large multi-species studies that will search for general migratory responses to geomagnetic cues. The tool therefore has a potential to uncover new knowledge about geomagnetic navigation and help resolve long-standing debates.


2021 ◽  
Vol 39 (3) ◽  
pp. 439-454
Author(s):  
Pavel Hejda ◽  
Fridrich Valach ◽  
Miloš Revallo

Abstract. The historical magnetic observatory Clementinum operated in Prague from 1839 to 1926. The data from the yearbooks that recorded the observations at Clementinum have recently been digitized and were subsequently converted, in this work, into the physical units of the International System of Units (SI). Introducing a database of geomagnetic data from this historical source is a part of our paper. Some controversial data are also analysed here. In the original historical sources, we identified an error in using the physical units. It was probably introduced by the observers determining the temperature coefficient of the bifilar apparatus. By recalculating the values ​​in the records, some missing values ​​are added; for instance, the temperature coefficients for the bifilar magnetometer, the baselines, and the annual averages for the horizontal intensity in the first years of observations were redetermined. The values ​​of absolute measurements of the declination in 1852, which could not be found in the original sources, were also estimated. The main contribution of this article rests in critically reviewed information about the magnetic observations in Prague, which is, so far, more complete than any other. The work also contributes to the space weather topic by revealing a record of the now almost forgotten magnetic disturbance of 3 September 1839.


Sign in / Sign up

Export Citation Format

Share Document