solar observatory
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 46)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 21 (12) ◽  
pp. 298
Author(s):  
Zi-Yue Wang ◽  
De-Qing Ren ◽  
Raffi Saadetian

Abstract Measurements of the daytime seeing profile of the atmospheric turbulence are crucial for evaluating a solar astronomical site so that research on the profile of the atmospheric turbulence as a function of altitude C n 2 ( h n ) becomes more and more critical for performance estimation and optimization of future adaptive optics (AO) including the multi-conjugate adaptive optics (MCAO) systems. Recently, the S-DIMM+ method has been successfully used to measure daytime turbulence profiles above the New Solar Telescope (NST) on Big Bear Lake. However, such techniques are limited by the requirement of using a large solar telescope which is not realistic for a new potential astronomical site. Meanwhile, the A-MASP (advanced multiple-aperture seeing profiler) method is more portable and has been proved that can reliably retrieve the seeing profile up to 16 km with the Dunn Solar Telescope (DST) on the National Solar Observatory (Townson, Kellerer et al.). But the turbulence of the ground layer is calculated by combining A-MASP and S-DIMM+ (Solar Differential Image Motion Monitor+) due to the limitation of the two-individual-telescopes structure. To solve these problems, we introduce the two-telescope seeing profiler (TTSP) which consists of two portable individual telescopes. Numerical simulations have been conducted to evaluate the performance of TTSP. We find our TTSP can effectively retrieve seeing profiles of four turbulence layers with a relative error of less than 4% and is dependable for actual seeing measurement.


2022 ◽  
Vol 924 (1) ◽  
pp. L18
Author(s):  
Yan Xu ◽  
Xu Yang ◽  
Graham S. Kerr ◽  
Vanessa Polito ◽  
Viacheslav M. Sadykov ◽  
...  

Abstract This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearly 100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of helium caused by the precipitation of high-energy electrons, as found in our recent numerical modeling results. In addition, though not strictly simultaneous, observations of Mg ii from the IRIS spacecraft, show an obvious central reversal pattern at the locations where enhanced absorption of He i 10830 Å is seen, which is consistent with previous observations.


2021 ◽  
Vol 923 (2) ◽  
pp. 234
Author(s):  
Jason J. Sorensen ◽  
Peter F. Bernath

Abstract The ZrO B1Π—X1Σ+ transition is an important opacity source in the near-infrared and optical spectrum of S-type stars. The 0–0, 0–1, 0–2, 1–0, 1–2, 1–3, 2–0, 2–1, 2–3, 2–4, 3–1, 3–4, and 4–2 bands of the 90Zr16O B1Π—X1Σ+ transition are reanalyzed using a high-temperature (2390 K) high-resolution (0.04 cm−1) emission spectrum collected at the National Solar Observatory (Kitt Peak). A modern spectroscopic analysis was performed using the PGOPHER program to provide updated spectroscopic constants and to produce a high-precision line list with line strengths based on an ab initio calculation of the transition dipole moment.


2021 ◽  
Vol 922 (2) ◽  
pp. 124
Author(s):  
Andreas Kopp ◽  
Jan Louis Raath ◽  
Horst Fichtner ◽  
Marius S. Potgieter ◽  
Stefan E. S. Ferreira ◽  
...  

Abstract The transport of energetic particles in the heliosphere is reviewed regarding the treatment of their drifts over an entire solar cycle including the periods around solar maximum, when the tilt angles of the heliospheric current sheet increase to large values and the sign of the magnetic polarity changes. While gradient and curvature drifts are well-established elements of the propagation of cosmic rays in the heliospheric magnetic field, their perturbation by the solar-activity-induced large-scale distortions of dipole-like field configurations and by magnetic turbulence is an open problem. Various empirical or phenomenological approaches have been suggested, but either lack a theory-based motivation or have been shown to be incompatible with measurements. We propose a new approach of more closely investigating solar magnetograms obtained from GONG maps, leading to a new definition of (i) tilt angles that may exceed those provided by the Wilcox Solar Observatory during high activity and of (ii) a “noninteger sign” that can be used to reduce the drifts during these periods as well as to provide a refinement of the magnetic field polarity. The change of sign from A < 0 to A > 0 of solar cycle 24 can be in this way localized to occur between Carrington Rotations 2139 and 2140 in mid 2013. This treatment is fully consistent in the sense that the transport modeling uses the same input data to formulate the boundary conditions at the heliobase as do the magnetohydrodynamic models of the solar wind and the embedded heliospheric magnetic field that exploit solar magnetograms as inner boundary conditions.


2021 ◽  
Author(s):  
Scott W. McIntosh ◽  
Phillip H. Scherrer ◽  
Lief Svalgaard ◽  
Robert J. Leamon

Abstract Through meticulous daily observation of the Sun’s large-scale magnetic field the Wilcox Solar Observatory has catalogued two magnetic (Hale) cycles of solar activity. Those two (∼22-year long) Hale cycles have yielded four (∼11-year long) sunspot cycles-21 through 24. Recent research has highlighted the persistence of the “Extended Solar Cycle” (ESC) and its connection to the fundamental Hale Cycle-albeit through a host of proxies resulting from image analysis of the solar photosphere, chromosphere and corona. This Letter presents, for the first time, a direct mapping between the ESC, the Sun’s toroidal magnetic field evolution of the Hale Cycle. As Sunspot Cycle 25 begins to accelerate its growth, interest in mapping the Hale and Extended cycles could not be higher given potential predictive capability that synoptic scale observations can provide.


2021 ◽  
Vol 257 (2) ◽  
pp. 33
Author(s):  
Kashvi Mundra ◽  
V. Aparna ◽  
Petrus Martens

Abstract There have been a few previous studies claiming that the effects of geomagnetic storms strongly depend on the orientation of the magnetic cloud portion of coronal mass ejections (CMEs). Aparna & Martens, using halo-CME data from 2007 to 2017, showed that the magnetic field orientation of filaments at the location where CMEs originate on the Sun can be used to credibly predict the geoeffectiveness of the CMEs being studied. The purpose of this study is to extend their survey by analyzing the halo-CME data for 1996–2006. The correlation of filament axial direction on the solar surface and the corresponding Bz signatures at L1 are used to form a more extensive analysis for the results previously presented by Aparna & Martens. This study utilizes Solar and Heliospheric Observatory Extreme-ultraviolet Imaging Telescope 195 Å, Michelson Doppler Imager magnetogram images, and Kanzelhöhe Solar Observatory and Big Bear Solar Observatory Hα images for each particular time period, along with ACE data for interplanetary magnetic field signatures. Utilizing all these, we have found that the trend in Aparna & Martens’ study of a high likelihood of correlation between the axial field direction on the solar surface and Bz orientation persists for the data between 1996 and 2006, for which we find a match percentage of 65%.


Solar Physics ◽  
2021 ◽  
Vol 296 (9) ◽  
Author(s):  
Indrajit V. Barve ◽  
C. Kathiravan ◽  
G. V. S. Gireesh ◽  
M. N. Anand ◽  
M. Rajesh ◽  
...  
Keyword(s):  

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 24
Author(s):  
Alister Graham ◽  
Katherine Kenyon ◽  
Lochlan Bull ◽  
Visura Don ◽  
Kazuki Kuhlmann

Radio astronomy commenced in earnest after World War II, with Australia keenly engaged through the Council for Scientific and Industrial Research. At this juncture, Australia’s Commonwealth Solar Observatory expanded its portfolio from primarily studying solar phenomena to conducting stellar and extragalactic research. Subsequently, in the 1950s and 1960s, astronomy gradually became taught and researched in Australian universities. However, most scientific publications from this era of growth and discovery have no country of affiliation in their header information, making it hard to find the Australian astronomy articles from this period. In 2014, we used the then-new Astrophysics Data System (ADS) tool Bumblebee to overcome this challenge and track down the Australian-led astronomy papers published during the quarter of a century after World War II, from 1945 until the lunar landing in 1969. This required knowledge of the research centres and facilities operating at the time, which are briefly summarised herein. Based on citation counts—an objective, universally-used measure of scientific impact—we report on the Australian astronomy articles which had the biggest impact. We have identified the top-ten most-cited papers, and thus also their area of research, from five consecutive time-intervals across that blossoming quarter-century of astronomy. Moreover, we have invested a substantial amount of time researching and providing a small tribute to each of the 62 scientists involved, including several trail-blazing women. Furthermore, we provide an extensive list of references and point out many interesting historical connections and anecdotes.


2021 ◽  
Author(s):  
Dmitrii Baranov ◽  
Elena Vernova ◽  
Marta Tyasto

&lt;p&gt;The properties of the magnetic fields of the solar photosphere are investigated, in particular, the distribution of fields of different polarity over the solar surface. As primary data, synoptic maps of the photospheric magnetic field of the Kitt Peak National Solar Observatory for 1978-2016 were used. Using the vector summation method, the non-axisymmetric component of the magnetic field is determined. It was found that the nonaxisymmetric component of weak magnetic fields B &lt; 5 G changes in antiphase with the flux of these fields. Magnetic fields of B &lt; 5 G constitute a significant part of the total magnetic field of the Sun, since they occupy more than 60% of the area of the photosphere. The fine structure of the distribution of weak fields can &amp;#160;be observed by setting the upper limit to the strength of the &amp;#160;fields &amp;#160;included in the time&amp;#8211;latitude diagram. This allows to eliminate the contribution of the strong fields of sunspots.&lt;/p&gt;&lt;p&gt;On the time-latitude diagram for weak magnetic fields (B &lt; 5 G), bands of differing colors correspond to the streams of the magnetic fields moving in the direction to the Sun&amp;#8217;s poles.. These streams or surges show the alternation of the dominant polarity - positive or negative - which is clearly seen in all four cycles. The slopes of the bands indicate the velocity of the fields movement towards the poles. The surges can be divided into two groups. The surges of the first group belong to the so-called Rush-to-the-Poles. These are bands with the width of about three years, which begin at approximately 40&amp;#176; of latitude and have the same polarity as the trailing sunspots. They reach high latitudes and cause the polarity reversal of the polar field. However, in addition to these surges, for most of the solar &amp;#160;cycle (the descending phase, the minimum and the ascending phase), there are narrower surges of both polarities (with the width less than one year), which extend from the equator almost to the poles. These surges are most clearly visible in the southern hemisphere when the southern pole is positive. Consideration of the latitude-time diagrams separately for positive and negative polarities showed that the alternating dominance of one of the polarities is associated with the antiphase development &amp;#160;of the positive and negative fields of the surges. The widths of surges and the periodicity of their appearance vary significantly for the two hemispheres and from one solar cycle to the other. The mean period of the polarity alternation is about 1.5 years.&lt;/p&gt;


Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
V. M. S. Carrasco ◽  
A. A. Pevtsov ◽  
J. M. Nogales ◽  
J. M. Vaquero

Sign in / Sign up

Export Citation Format

Share Document