Living for Six Days at 2200 M Improves Time-Trial Performance of Sea-Level Residents Exposed to 4300 M

2008 ◽  
Author(s):  
Charles S. Fulco ◽  
Stephen R. Muza ◽  
Beth Beidleman ◽  
Juli Jones ◽  
Eric Lammi ◽  
...  
2008 ◽  
Vol 40 (Supplement) ◽  
pp. S171-S172
Author(s):  
Charles S. Fulco ◽  
Stephen R. Muza ◽  
Beth Beidleman ◽  
Juli Jones ◽  
Eric Lammi ◽  
...  

2014 ◽  
Vol 28 (9) ◽  
pp. 2513-2520 ◽  
Author(s):  
Renato A.S. Silva ◽  
Fernando L. Silva-Júnior ◽  
Fabiano A. Pinheiro ◽  
Patrícia F.M. Souza ◽  
Daniel A. Boullosa ◽  
...  

2008 ◽  
Vol 26 (14) ◽  
pp. 1477-1487 ◽  
Author(s):  
Marc J. Quod ◽  
David T. Martin ◽  
Paul B. Laursen ◽  
Andrew S. Gardner ◽  
Shona L. Halson ◽  
...  

2010 ◽  
Vol 5 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Mohammed Ihsan ◽  
Grant Landers ◽  
Matthew Brearley ◽  
Peter Peeling

Purpose:The effect of crushed ice ingestion as a precooling method on 40-km cycling time trial (CTT) performance was investigated.Methods:Seven trained male subjects underwent a familiarization trial and two experimental CTT which were preceded by 30 min of either crushed ice ingestion (ICE) or tap water (CON) consumption amounting to 6.8 g⋅kg-1 body mass. The CTT required athletes to complete 1200 kJ of work on a wind-braked cycle ergometer. During the CTT, gastrointestinal (Tgi) and skin (Tsk) temperatures, cycling time, power output, heart rate (HR), blood lactate (BLa), ratings of perceived exertion (RPE) and thermal sensation (RPTS) were measured at set intervals of work.Results:Precooling lowered the Tgi after ICE significantly more than CON (36.74 ± 0.67°C vs 37.27 ± 0.24°C, P < .05). This difference remained evident until 200 kJ of work was completed on the bike (37.43 ± 0.42°C vs 37.64 ± 0.21°C). No significant differences existed between conditions at any time point for Tsk, RPE or HR (P > .05). The CTT completion time was 6.5% faster in ICE when compared with CON (ICE: 5011 ± 810 s, CON: 5359 ± 820 s, P < .05).Conclusions:Crushed ice ingestion was effective in lowering Tgi and improving subsequent 40-km cycling time trial performance. The mechanisms for this enhanced exercise performance remain to be clarified.


Author(s):  
Hilkka Kontro ◽  
Marta Kozior ◽  
Gráinne Whelehan ◽  
Miryam Amigo-Benavent ◽  
Catherine Norton ◽  
...  

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg−1·2 hr−1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg−1·2 hr−1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L−1·2 hr−1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L−1·2 hr−1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.


2019 ◽  
Vol 14 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Steve H. Faulkner ◽  
Iris Broekhuijzen ◽  
Margherita Raccuglia ◽  
Maarten Hupperets ◽  
Simon G. Hodder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document