Estimation of Ocean Surface Wind Speed and Direction From Polarimetric Radiometry Data

2008 ◽  
Author(s):  
David R. Lyzenga
2020 ◽  
Vol 12 (2) ◽  
pp. 155-164
Author(s):  
He Fang ◽  
William Perrie ◽  
Gaofeng Fan ◽  
Tao Xie ◽  
Jingsong Yang

2020 ◽  
Vol 12 (12) ◽  
pp. 2034 ◽  
Author(s):  
Hongsu Liu ◽  
Shuanggen Jin ◽  
Qingyun Yan

Ocean surface wind speed is an essential parameter for typhoon monitoring and forecasting. However, traditional satellite and buoy observations are difficult to monitor the typhoon due to high cost and low temporal-spatial resolution. With the development of spaceborne GNSS-R technology, the cyclone global navigation satellite system (CYGNSS) with eight satellites in low-earth orbit provides an opportunity to measure the ocean surface wind speed of typhoons. Though observations are made at the extremely efficient spatial and temporal resolution, its accuracy and reliability are unclear in an actual super typhoon case. In this study, the wind speed variations over the life cycle of the 2018 Typhoon Mangkhut from CYGNSS observations were evaluated and compared with European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-5 (ERA-5). The results show that the overall root-mean-square error (RMSE) of CYGNSS versus ECMWF was 4.12 m/s, the mean error was 1.36 m/s, and the correlation coefficient was 0.96. For wind speeds lower and greater than 15 m/s, the RMSE of CYGNSS versus ECMWF were 1.02 and 4.36 m/s, the mean errors were 0.05 and 1.61 m/s, the correlation coefficients were 0.91 and 0.90, and the average relative errors were 9.8% and 11.6%, respectively. When the typhoon reached a strong typhoon or super typhoon, the RMSE of CYGNSS with respect to ERA-5 from ECMWF was 5.07 m/s; the mean error was 3.57 m/s; the correlation coefficient was 0.52 and the average relative error was 11.0%. The CYGNSS estimation had higher precision for wind speeds below 15 m/s, but degraded when the wind speed was above 15 m/s.


2021 ◽  
Vol 1 ◽  
Author(s):  
Anna Murphy ◽  
Yongxiang Hu

A neural network nonlinear regression algorithm is developed for retrieving ocean surface wind speed from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar measurements. The neural network is trained with CALIPSO ocean surface and atmospheric backscatter measurements together with collocated Advanced Microwave Scanning Radiometer for EOS (AMSR-E) ocean surface wind speed. Ocean surface wind speeds are derived by applying the neural network algorithm to CALIPSO measurements between 2008 and 2020. CALIPSO wind speed measurements of 2015 are also compared with Advanced Microwave Scanning Radiometer 2 (AMSR-2) measurements on the Global Change Observation Mission–Water “Shizuku” (GCOM-W) satellite. Aerosol optical depths are then derived from CALIPSO’s ocean surface backscatter signal and theoretical ocean surface reflectance calculated from CALIPSO wind speed and Cox-Munk wind–surface slope variance relation. This CALIPSO wind speed retrieval technique is an improvement from our previous studies, as it can be applied to most clear skies with optical depths up to 1.5 without making assumptions about aerosol lidar ratio.


Sign in / Sign up

Export Citation Format

Share Document