Predicting Chemical Toxicity from Proteomics and Computational Chemistry

2008 ◽  
Author(s):  
Subhash C. Basak
2020 ◽  
Author(s):  
Ekadashi Pradhan ◽  
Jordan N. Bentley ◽  
Christopher B. Caputo ◽  
Tao Zeng

This is a computational chemistry study in designing singlet fission chromophores based on a diazadiborine framework. Substitutions and additions are proposed to enhance diradical character of the diazadiborine so that the designed molecules satisfy the two energy criteria for singlet fission. Synthesizability of the designed molecules is discussed.


2019 ◽  
Vol 38 (4) ◽  
pp. 251-264 ◽  
Author(s):  
Jason M. Koontz ◽  
Blair C. R. Dancy ◽  
Cassandra L. Horton ◽  
Jonathan D. Stallings ◽  
Valerie T. DiVito ◽  
...  

There is overwhelming evidence that the microbiome must be considered when evaluating the toxicity of chemicals. Disruption of the normal microbial flora is a known effect of toxic exposure, and these disruptions may lead to human health effects. In addition, the biotransformation of numerous compounds has been shown to be dependent on microbial enzymes, with the potential for different host health outcomes resulting from variations in the microbiome. Evidence suggests that such metabolism of environmental chemicals by enzymes from the host's microbiota can affect the toxicity of that chemical to the host. Chemical-microbial interactions can be categorized into two classes: Microbiome Modulation of Toxicity (MMT) and Toxicant Modulation of the Microbiome (TMM). MMT refers to transformation of a chemical by microbial enzymes or metabolites to modify the chemical in a way that makes it more or less toxic. TMM is a change in the microbiota that results from a chemical exposure. These changes span a large magnitude of effects and may vary from microbial gene regulation, to inhibition of a specific enzyme, to the death of the microbes. Certain microbiomes or microbiota may become associated with different health outcomes, such as resistance or susceptibility to exposure to certain toxic chemicals, the ability to recover following a chemical-induced injury, the presence of disease-associated phenotypes, and the effectiveness of immune responses. Future work in toxicology will require an understanding of how the microbiome interacts with toxicants to fully elucidate how a compound will affect a diverse, real-world population.


RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7225-7225
Author(s):  
Anmin Liu ◽  
Xuefeng Ren ◽  
Bo Wang ◽  
Jie Zhang ◽  
Peixia Yang ◽  
...  

Correction for ‘Complexing agent study via computational chemistry for environmentally friendly silver electrodeposition and the application of a silver deposit’ by Anmin Liu et al., RSC Adv., 2014, 4, 40930–40940, DOI: 10.1039/C4RA05869K.


Sign in / Sign up

Export Citation Format

Share Document