Upper Ocean Stratification in the Bay of Bengal During Asiri

2013 ◽  
Author(s):  
Eric A. D Asaro
2002 ◽  
Vol 22 (5) ◽  
pp. 791-802 ◽  
Author(s):  
V.V Gopalakrishna ◽  
V.S.N Murty ◽  
D Sengupta ◽  
Shrikant Shenoy ◽  
Nilesh Araligidad

2012 ◽  
Vol 117 (C12) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Neetu ◽  
Matthieu Lengaigne ◽  
Emmanuel M. Vincent ◽  
Jérôme Vialard ◽  
Gurvan Madec ◽  
...  

Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 931-943 ◽  
Author(s):  
I. Bashmachnikov ◽  
X. Carton

Abstract. Meddies, intra-thermocline eddies of Mediterranean water, can often be detected at the sea surface as positive sea-level anomalies. Here we study the surface signature of several meddies tracked with RAFOS floats and AVISO altimetry. While pushing its way through the water column, a meddy raises isopycnals above. As a consequence of potential vorticity conservation, negative relative vorticity is generated in the upper layer. During the initial period of meddy acceleration after meddy formation or after a stagnation stage, a cyclonic signal is also generated at the sea-surface, but mostly the anticyclonic surface signal follows the meddy. Based on geostrophy and potential vorticity balance, we present theoretical estimates of the intensity of the surface signature. It appears to be proportional to the meddy core radius and to the Coriolis parameter, and inversely proportional to the core depth and buoyancy frequency. This indicates that surface signature of a meddy may be strongly reduced by the upper ocean stratification. Using climatic distribution of the stratification intensity, we claim that the southernmost limit for detection in altimetry of small meddies (with radii on the order of 10–15 km) should lie in the subtropics (35–45° N), while large meddies (with radii of 25–30 km) could be detected as far south as the northern tropics (25–35° N). Those results agree with observations.


2017 ◽  
Vol 47 (10) ◽  
pp. 2419-2427 ◽  
Author(s):  
Daniel B. Whitt ◽  
John R. Taylor

AbstractAtmospheric storms are an important driver of changes in upper-ocean stratification and small-scale (1–100 m) turbulence. Yet, the modifying effects of submesoscale (0.1–10 km) motions in the ocean mixed layer on stratification and small-scale turbulence during a storm are not well understood. Here, large-eddy simulations are used to study the coupled response of submesoscale and small-scale turbulence to the passage of an idealized autumn storm, with a wind stress representative of a storm observed in the North Atlantic above the Porcupine Abyssal Plain. Because of a relatively shallow mixed layer and a strong downfront wind, existing scaling theory predicts that submesoscales should be unable to restratify the mixed layer during the storm. In contrast, the simulations reveal a persistent and strong mean stratification in the mixed layer both during and after the storm. In addition, the mean dissipation rate remains elevated throughout the mixed layer during the storm, despite the strong mean stratification. These results are attributed to strong spatial variability in stratification and small-scale turbulence at the submesoscale and have important implications for sampling and modeling submesoscales and their effects on stratification and turbulence in the upper ocean.


2009 ◽  
pp. 197-211
Author(s):  
P. SWAPNA ◽  
N. BAHULAYAN ◽  
N. A. DIANSKY

Sign in / Sign up

Export Citation Format

Share Document