scholarly journals 600 PB 208 ROOT ADAPTATION TO COMPETITION

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 518b-518
Author(s):  
D. M. Glenn ◽  
W. V. Welker

The effect of ground covers on water uptake was studied using peach trees grown in a 4-part split root system. In 1992, one section of the root system was in bare soil and 3 sections were in combination with `K-31' tall fescue. In 1993, K-31 was eliminated in 2 additional sections, leaving 1 section in combination with `K-31'. When grass transpiration was suppressed by covering the K-31, tree water uptake/cm of root length was greater in the presence of grass compared to bare soil under well watered conditions. These data indicate that peach trees compensate for interspecific competition by increasing root hydraulic conductivity.

HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 187b-187
Author(s):  
David M. Modise ◽  
Michael D. Glenn ◽  
Morris Ingle

The split root technique was used to study water afflux in peach [Prunus persica (L.) Batsch] from wet to dry soil through root systems that bridge wet and dry soil. Peach trees conduct hydraulic lift (HL) to ameliorate water deficits in dry soil layers, under conditions of low transpirational demand. The objectives of this study were to examine the magnitude of HL in peach and to determine its effect on nutrient uptake from dry soil. In addition, the split root system was used to measure peach water uptake from soil supporting `Kentucky 31' tall fescue [Festuca arundinaceae (Schreb)] and determine the diurnal partitioning of water use from covered and bare soil treatments. A Scholander pressure bomb was used to record hourly measurements of water potentials (10 am to 4 p m), daily for a total of 14 days in 3 replicates (1 tree/rep.). Leaf stomata1 resistance was measured using a porometer, simultaneously with the water potential measurements. The CR 7 datalogger was used to record water transfer into the dry root section. 15N was applied in the 15-30 cm root zone, and the concentration in the leaves was determined using a mass spectrometer. Results obtained will be discussed in relation to objectives stated above.


1993 ◽  
Vol 118 (5) ◽  
pp. 570-574 ◽  
Author(s):  
D.M. Glenn ◽  
W.V. Welker

Seedling `Tennessee Natural' peach [Prunus persica (L.) Batsch] trees were grown in a series of five greenhouse experiments to determine how peach root development was affected by the interaction of soil pressure potential and the presence of Kentucky-31 (K-31) tall fescue (Festuca arundinaceae Schreb.). Peach trees were grown in split-root rhizotrons that had four separate root growth sections. When two of the four sections had live sod (LS) and two remained bare soil (BS), there was no effect of the LS on peach root development when the trees were irrigated daily. Peach root development was reduced in BS and LS treatments when soil pressure potential was less than -0.06 MPa. In contrast, when trees were grown in rhizotrons that had all four sections with either LS or a killed K-31 sod (KS), peach root development was reduced in the LS treatment compared to the KS treatments when irrigated daily or when soil pressure potential reached -0.03 MPa. The apparent root surface water potential of peach trees in the LS treatment was -0.4 MPa lower than that in the KS treatment under daily irrigation due to the interference of the K-31 tall fescue. In two additional experiments using peach trees with BS in all four sections, we maintained three sections at field capacity and allowed one section to dry to -0.06 to 1.5 MPa. During the night, when transpiration was low, water was transferred to the dry soil section via the peach root system from the three wet soil sections. It appears that the root system of peach can maintain root development in the presence of tall fescue by transferring water from regions of high water availability to those of low availability.


1994 ◽  
Vol 90 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Sylvain Chaillou ◽  
James W. Rideout ◽  
C. David Raper, ◽  
Jean-Francois Morot-Gaudry

2009 ◽  
Vol 123 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Houneida Attia ◽  
Sarra Nouaili ◽  
Abdelaziz Soltani ◽  
Mokhtar Lachaâl

2004 ◽  
Vol 31 (10) ◽  
pp. 971 ◽  
Author(s):  
Darren M. Mingo ◽  
Julian C. Theobald ◽  
Mark A. Bacon ◽  
William J. Davies ◽  
Ian C. Dodd

Tomato (Lycopersicon esculentum Mill.) plants were grown in either a glasshouse (GH) or a controlled environment cabinet (CEC) to assess the effects of partial rootzone drying (PRD) on biomass allocation. Control and PRD plants received the same amounts of water. In control plants, water was equally distributed between two compartments of a split-root system. In PRD plants, only one compartment was watered while the other was allowed to dry. At the end of each drying cycle, wet and dry compartments were alternated. In the GH, total biomass did not differ between PRD and control plants after four cycles of PRD, but PRD increased root biomass by 55% as resources were partitioned away from shoot organs. In the CEC, leaf water potential did not differ between treatments at the end of either of two cycles of PRD, but stomatal conductance of PRD plants was 20% less at the end of the first cycle than at the beginning. After two cycles of PRD in the CEC, biomass did not differ between PRD and control plants, but PRD increased root biomass by 19% over the control plants. The promotion of root biomass in PRD plants was associated with the alternation of wet and dry compartments, with increased root biomass occurring in the re-watered compartment after previous exposure to soil drying. Promotion of root biomass in field-grown PRD plants may allow the root system to access resources (water and nutrients) that would otherwise be unavailable to control plants. This may contribute to the ability of PRD plants to maintain similar leaf water potentials to conventionally irrigated plants, even when smaller irrigation volumes are supplied.


Sign in / Sign up

Export Citation Format

Share Document