Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system

1990 ◽  
Vol 16 (8) ◽  
pp. 2429-2439 ◽  
Author(s):  
Seung -Won Lyu ◽  
Udo Blum
HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 518b-518
Author(s):  
D. M. Glenn ◽  
W. V. Welker

The effect of ground covers on water uptake was studied using peach trees grown in a 4-part split root system. In 1992, one section of the root system was in bare soil and 3 sections were in combination with `K-31' tall fescue. In 1993, K-31 was eliminated in 2 additional sections, leaving 1 section in combination with `K-31'. When grass transpiration was suppressed by covering the K-31, tree water uptake/cm of root length was greater in the presence of grass compared to bare soil under well watered conditions. These data indicate that peach trees compensate for interspecific competition by increasing root hydraulic conductivity.


1994 ◽  
Vol 90 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Sylvain Chaillou ◽  
James W. Rideout ◽  
C. David Raper, ◽  
Jean-Francois Morot-Gaudry

2009 ◽  
Vol 123 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Houneida Attia ◽  
Sarra Nouaili ◽  
Abdelaziz Soltani ◽  
Mokhtar Lachaâl

2004 ◽  
Vol 31 (10) ◽  
pp. 971 ◽  
Author(s):  
Darren M. Mingo ◽  
Julian C. Theobald ◽  
Mark A. Bacon ◽  
William J. Davies ◽  
Ian C. Dodd

Tomato (Lycopersicon esculentum Mill.) plants were grown in either a glasshouse (GH) or a controlled environment cabinet (CEC) to assess the effects of partial rootzone drying (PRD) on biomass allocation. Control and PRD plants received the same amounts of water. In control plants, water was equally distributed between two compartments of a split-root system. In PRD plants, only one compartment was watered while the other was allowed to dry. At the end of each drying cycle, wet and dry compartments were alternated. In the GH, total biomass did not differ between PRD and control plants after four cycles of PRD, but PRD increased root biomass by 55% as resources were partitioned away from shoot organs. In the CEC, leaf water potential did not differ between treatments at the end of either of two cycles of PRD, but stomatal conductance of PRD plants was 20% less at the end of the first cycle than at the beginning. After two cycles of PRD in the CEC, biomass did not differ between PRD and control plants, but PRD increased root biomass by 19% over the control plants. The promotion of root biomass in PRD plants was associated with the alternation of wet and dry compartments, with increased root biomass occurring in the re-watered compartment after previous exposure to soil drying. Promotion of root biomass in field-grown PRD plants may allow the root system to access resources (water and nutrients) that would otherwise be unavailable to control plants. This may contribute to the ability of PRD plants to maintain similar leaf water potentials to conventionally irrigated plants, even when smaller irrigation volumes are supplied.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0227020
Author(s):  
Huawen Zhang ◽  
Runfeng Wang ◽  
Hailian Wang ◽  
Bin Liu ◽  
Mengping Xu ◽  
...  

2010 ◽  
Vol 332 (1-2) ◽  
pp. 339-355 ◽  
Author(s):  
Ingrid Langer ◽  
Syafruddin Syafruddin ◽  
Siegrid Steinkellner ◽  
Markus Puschenreiter ◽  
Walter W. Wenzel

Sign in / Sign up

Export Citation Format

Share Document