Establishment of a Non-dormant Blueberry (Vaccinium Corymbosum Hybrid) Production System in a Warm Winter Climate

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 529a-529
Author(s):  
Rebecca L. Darnell ◽  
J.G. Williamson ◽  
T.A. Obreza

A high-density planting of three southern highbush cultivars was established in 1994 in southwest Florida to test the feasibility of a non-dormant blueberry production system. A non-dormant system involves continuous application of nitrogen throughout fall and winter, which enables the plants to avoid the normal dormancy cycle and the concomitant chilling requirement. Three nitrogen fertilizer rates and two organic soil amendments (muncipal solid waste compost and acidic peat) were evaluated for effects on maintaining plant growth in this system. In general, increasing N rates from 84 to 252 kg·ha–1 increased plant canopy volume, leaf retention, and rate of new vegetative budbreak. Plant height and volume were consistently greater for plants grown in the compost compared to the peat amendment, but there were no differences in leaf retention or vegetative budbreak between the two soil amendments. Flower bud density and fruit yield were increased in plants grown in the compost compared to the peat, while N rate had no effect on either. Plants in this non-dormant system have shown no deleterious growth effects, suggesting that establishing a blueberry planting in a warm winter climate is feasible under the described conditions.

2018 ◽  
Vol 8 (1) ◽  
pp. e00159
Author(s):  
Mansur Usman Dawaki ◽  
Abdulrahman Lado ◽  
Maharaz Alhaji Yusuf ◽  
Bassam A. Lawan ◽  
Umar F. Galadanci

2001 ◽  
Vol 126 (4) ◽  
pp. 386-393 ◽  
Author(s):  
P.A.W. Swain ◽  
R.L. Darnell

Two cultivars of southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrid), `Sharpblue' and `Wannabe', were container-grown outside in either a dormant or nondormant production system to determine how the two production systems affected carbohydrate (CH2O) status, growth, and development. Plants were maintained in the nondormant condition by continuous N fertilization throughout winter (average maximum/minimum temperatures of 17/5 °C). Plants in the nondormant system retained their foliage longer into the winter compared with plants in the dormant system. Flower bud number, density, fruit number, and total fruit fresh weight (FW) per plant were greater in the nondormant compared with the dormant system plants for both cultivars. Mean fruit FW was greater in dormant compared with nondormant `Wannabe' plants, while in `Sharpblue', mean fruit FW was similar in both systems. Cane and root CH2O concentrations in nondormant system plants were generally similar to or lower than those measured in dormant system plants. Assuming that longer leaf retention in nondormant system plants increased CH2O synthesis compared with dormant system plants, the patterns of reproductive/vegetative development and root/shoot CH2O concentrations indicate that the increased CH2O in nondormant system plants was allocated to increased reproductive growth in lieu of CH2O reserve accumulation. It is probable that this increased CH2O availability, combined with longer perception of short days due to longer leaf retention, were major factors in increasing flower bud initiation and yield in the nondormant compared with the dormant system plants.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 443D-443
Author(s):  
Peter A.W. Swain ◽  
Rebecca L. Darnell

Two cultivars of southern highbush blueberry (Vaccinium corymbosum interspecific hybrid) were grown in containers under the traditional deciduous production system, or the dormancy-avoiding evergreen production system. In the dormancy-avoiding system, plants are maintained evergreen and do not enter dormancy in the winter. This alleviates the chilling requirement, thus extending the potential growing area of blueberries into subtropical regions. Plants in the evergreen production system were maintained in active growth through weekly or biweekly N fertilization (≈21–23 g N/ plant per year). Keeping foliage through the year lengthens the duration of the photosynthetic season of the plant and is hypothesized to improve the carbohydrate (CHO) status of the evergreen plants. This, in turn, may decrease source limitations to reproductive development and potentially increase fruit number and/or size. In both cultivars, the evergreen production system advanced the time of anthesis by 3 to 4 weeks compared to the deciduous production system. Plants in the evergreen system initiated 10% to 25% more flower buds than plants in the deciduous system, depending on cultivar. Average leaf area, leaf fresh weight, total above-ground fresh weight, bud density, and cane length were greater in the evergreen plants than deciduous. The evergreen production system increased plant fresh weight and flower bud number compared to the deciduous system, and may ultimately increase yield.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 528e-529
Author(s):  
Peter A.W. Swain ◽  
Rebecca L. Darnell

Two cultivars of southern highbush blueberry (Vaccinium corymbosum interspecific hybrid) were grown in containers under the traditional dormant production system or the non-dormant production system. Plants in the non-dormant production system were maintained by continuous N fertilization throughout the year. The first objective was to determine when source limitations to reproductive development in blueberry occurred. The second objective was to determine if source limitations could be alleviated by the non-dormant production system, since photosynthesis and therefore carbohydrate accumulation continue later into the season. In order to determine when source limitations occurred, reproductive manipulations were applied to three groups of plants, either after flower bud differentiation in the fall, or after fruit set in the spring. After flower bud differentiation, 80% of the flower buds were removed from one plant group. After fruit set, 80% of individual fruits or 80% of fruit clusters were removed from two other plant groups. Average fruit dry weight was higher in the flower bud removal treatment than in the fruit removal or control treatments in the dormant production system, indicating a source limitation occurs prior to anthesis. No pre-anthesis source limitation was found in the non-dormant system; this is probably due to insufficient fruit and flower removal, and/or continued flower bud initiation prior to anthesis in this system. However, both fruit number and total yield were significantly higher in the non-dormant than the dormant production system.


2002 ◽  
Vol 127 (5) ◽  
pp. 742-748 ◽  
Author(s):  
Wei Qiang Yang ◽  
Barbara L. Goulart ◽  
K. Demchak ◽  
Yadong Li

The ability of mycorrhizal and nonmycorrhizal `Elliott' highbush blueberry (Vaccinium corymbosum L.) plants to acquire soil N under different preplant organic soil amendment regimes (forest litter, rotted sawdust, or no amendment) was investigated in a field experiment using 15N labeled (NH4)2SO4. Plants inoculated with an ericoid mycorrhizal isolate, Oidiodendron maius Dalpé (UAMH 9263), had lower leaf 15N enrichment and higher leaf N contents than noninoculated plants but similar leaf N concentrations, indicating mycorrhizal plants absorbed more nonlabeled soil N than nonmycorrhizal plants. Mycorrhizal plants produced more plant dry weight (DW) and larger canopy volumes. The effect of preplant organic amendments on the growth of highbush blueberry plants was clearly demonstrated. Plants grown in soil amended with forest litter produced higher DW than those in either the rotted sawdust amendment or no amendment. Plants grown in soils amended preplant with sawdust, the current commercial recommendation, were the smallest. Differences in the carbon to nitrogen ratio were likely responsible for growth differences among plants treated with different soil amendments.


Sign in / Sign up

Export Citation Format

Share Document