scholarly journals SUSTAINABLE NURSERY PRODUCTION PRACTICES EXTENSION PROGRAMS: IPM AND BMP

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 499E-499
Author(s):  
Amy Fulcher ◽  
Dava Hayden ◽  
Winston Dunwell

The objectives of Kentucky's Sustainable Nursery Production Practices Extension Program are for 1) the Kentucky nursery industry to continue sustained growth and 2) Kentucky growers to produce high quality plants, efficiently use pesticides, be stewards of their land and Kentucky's environment. Sustainable Nursery Program Components are 1) Integrated Pest Management (IPM): Nursery Scouting, Scout Training and Scouting Education for growers, Extension workers, and students; 2) Best Management Practice (BMP) Workshops: BMP VI: Disease Demolition Workshop; 3) Production Practice Demonstration: Pruning Training, Pesticide Handling, and Safety and Environmental Stewartship. 4.) Research: Pruning protocols; Media and media amendments; Precision Fertilization and Irrigation. The Kentucky Nursery Crops Scouting Program scouting guidelines were developed and contained: a weekly scouting/trapping guide; a listing of which pests to look for and on what host plants, and a detailed methodology of precisely how to look for the pest, its damage, and how to record this information such that comparisons could be made across nurseries and seasons.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 507d-507
Author(s):  
Steven E. Newman ◽  
Karen L. Panter

There is a need for educational programming for greenhouse growers on effective uses of biorational pesticides and biological controls of insect and mite pests, diseases, and alternatives to herbicide sprays in confined areas; however, in many states, travel for specialists for programming and workshops is becoming prohibitive. A series of programs outlining Best Management Practices (BMP) for the greenhouse industry outlining techniques and practices reducing pesticide use were conducted at multiple sites in Colorado simultaneously using interactive compressed video technology. This conferencing technology is gaining wide acceptance in many venues and provides an opportunity for wider participation of clientele without travel. Participants in the programs reported in post-session evaluations that they did miss the personal interaction with the speakers, but did acknowledge that not having to drive 5 hours to attend a seminar was quite beneficial.


2006 ◽  
Vol 41 (7) ◽  
pp. 1315-1326 ◽  
Author(s):  
JEN-YANG LIN ◽  
YEN-CHANG CHEN ◽  
WALTER CHEN ◽  
TSU-CHUAN LEE ◽  
SHAW L. YU

2006 ◽  
Vol 53 (11) ◽  
pp. 1-9 ◽  
Author(s):  
A.J. Englande ◽  
W.W. Eckenfelder ◽  
G. Jin

The focus of this paper is on variability concerns in wastewater treatment and approaches to control unacceptable fluctuations in effluent quality. Areas considered include: factors contributing to variability in both waste loads and process technology performance; variability assessment; control of variability employing the process best management practice (BMP); design/operation of biological waste treatment technologies for variability reduction; and modelling to enhance process control.


2014 ◽  
Vol 11 (1) ◽  
pp. 91-107 ◽  
Author(s):  
F. Cui ◽  
X. Zheng ◽  
C. Liu ◽  
K. Wang ◽  
Z. Zhou ◽  
...  

Abstract. Contemporary agriculture is shifting from a single-goal to a multi-goal strategy, which in turn requires choosing best management practice (BMP) based on an assessment of the biogeochemical effects of management alternatives. The bottleneck is the capacity of predicting the simultaneous effects of different management practice scenarios on multiple goals and choosing BMP among scenarios. The denitrification–decomposition (DNDC) model may provide an opportunity to solve this problem. We validated the DNDC model (version 95) using the observations of soil moisture and temperature, crop yields, aboveground biomass and fluxes of net ecosystem exchange of carbon dioxide, methane, nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from a wheat–maize cropping site in northern China. The model performed well for these variables. Then we used this model to simulate the effects of management practices on the goal variables of crop yields, NO emission, nitrate leaching, NH3 volatilization and net emission of greenhouse gases in the ecosystem (NEGE). Results showed that no-till and straw-incorporated practices had beneficial effects on crop yields and NEGE. Use of nitrification inhibitors decreased nitrate leaching and N2O and NO emissions, but they significantly increased NH3 volatilization. Irrigation based on crop demand significantly increased crop yield and decreased nitrate leaching and NH3 volatilization. Crop yields were hardly decreased if nitrogen dose was reduced by 15% or irrigation water amount was reduced by 25%. Two methods were used to identify BMP and resulted in the same BMP, which adopted the current crop cultivar, field operation schedules and full straw incorporation and applied nitrogen and irrigation water at 15 and 25% lower rates, respectively, than the current use. Our study indicates that the DNDC model can be used as a tool to assess biogeochemical effects of management alternatives and identify BMP.


2009 ◽  
Vol 27 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Angela Hewitt ◽  
Gary Watson

Abstract Typical nursery production practices, such as root pruning and transplanting, can alter tree root architecture and contribute to root systems that are too deep. In a study of field-grown liner production, root architecture was examined at each stage of the production process, from first year seedlings or rooted cuttings, through 4 to 5 year old branched liners. Depth and diameter of structural roots were recorded on ten replications each of Acer saccharum, Gleditsia triancanthos, Pyrus calleryana, and apple seedling rootstocks; Platanus ‘Columbia’ clonal rooted cuttings; and apple EMLA 111 clonal rootstock produced by mound propagation. By the time the liners reached marketable size, most natural lateral roots emerging from the primary root were lost. Simultaneously, adventitious roots were produced deeper on the root shank at the pruned end of the primary root. These changes in architecture result in the formation of an ‘adventitious root flare’ that is deeper in the soil than a natural root flare. The depth of this new root flare is dependent upon nursery production practices and may influence the ultimate depth of structural roots in the landscape.


EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Amanda D. Ali ◽  
Laura A. Sanagorski Warner ◽  
Peyton Beattie ◽  
Alexa J. Lamm ◽  
Joy N. Rumble

Residents are inclined to over-irrigate and over-fertilize their lawns to uphold landscape appearances influenced by homeowner associations and neighborhood aesthetics (Nielson & Smith (2005). While these practices affect water quantity and quality, water quality is most impacted by fertilizer runoff (Nielson & Smith, 2005; Toor et al., 2017). Supporting water programs and engagement in fertilizer best management practices (BMPs) can have positive impacts on water quality. The Diffusion of Innovations (DOI) theory can be used to explain how a population accepts and adopts fertilizer best management practices (BMPs) over time (Rogers, 2003). Adoption can be understood through a population's perception of relative advantage, compatibility, complexity, observability, and trialability of fertilizer BMPs. The information presented here is an exploration of how extension can use video messages to influence residents' perception of these factors which influence adoption. The videos positively influence residents' perceptions of fertilizer BMPs, and recommendations are offered for applying this research to extension programs. 


2016 ◽  
pp. 161-164
Author(s):  
N.J. Donovan ◽  
T. Khurshid ◽  
S.G. Falivene ◽  
J. Bowes

Sign in / Sign up

Export Citation Format

Share Document